Admissiblity in Concurrent Games

Authors Nicolas Basset, Gilles Geeraerts, Jean-François Raskin, Ocan Sankur



PDF
Thumbnail PDF

File

LIPIcs.ICALP.2017.123.pdf
  • Filesize: 0.65 MB
  • 14 pages

Document Identifiers

Author Details

Nicolas Basset
Gilles Geeraerts
Jean-François Raskin
Ocan Sankur

Cite AsGet BibTex

Nicolas Basset, Gilles Geeraerts, Jean-François Raskin, and Ocan Sankur. Admissiblity in Concurrent Games. In 44th International Colloquium on Automata, Languages, and Programming (ICALP 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 80, pp. 123:1-123:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)
https://doi.org/10.4230/LIPIcs.ICALP.2017.123

Abstract

In this paper, we study the notion of admissibility for randomised strategies in concurrent games. Intuitively, an admissible strategy is one where the player plays 'as well as possible', because there is no other strategy that dominates it, i.e., that wins (almost surely) against a superset of adversarial strategies. We prove that admissible strategies always exist in concurrent games, and we characterise them precisely. Then, when the objectives of the players are omega-regular, we show how to perform assume-admissible synthesis, i.e., how to compute admissible strategies that win (almost surely) under the hypothesis that the other players play admissible strategies only.
Keywords
  • Multi-player games
  • admissibility
  • concurrent games
  • randomized strategies

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Brandenburger Adam, Friedenberg Amanda, H Jerome, et al. Admissibility in games. Econometrica, 2008. Google Scholar
  2. Rajeev Alur, Thomas A. Henzinger, and Orna Kupferman. Alternating-time temporal logic. J. ACM, 49(5):672-713, 2002. URL: http://dx.doi.org/10.1145/585265.585270.
  3. Christel Baier and Joost-Pieter Katoen. Principles of Model Checking (Representation and Mind Series). The MIT Press, 2008. Google Scholar
  4. Nicolas Basset, Gilles Geeraerts, Jean-François Raskin, and Ocan Sankur. Admissibility in concurrent games. CoRR, abs/1702.06439, 2017. URL: http://arxiv.org/abs/1702.06439.
  5. Dietmar Berwanger. Admissibility in infinite games. In STACS 2007, 24th Annual Symposium on Theoretical Aspects of Computer Science, Aachen, Germany, February 22-24, 2007, Proceedings, number 4393 in Lecture Notes in Computer Science, pages 188-199. Springer, 2007. URL: http://dx.doi.org/10.1007/978-3-540-70918-3_17.
  6. Patricia Bouyer, Romain Brenguier, Nicolas Markey, and Michael Ummels. Nash equilibria in concurrent games with Büchi objectives. In Proceedings of the 31st Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS'11), volume 13 of Leibniz International Proceedings in Informatics, pages 375-386, Mumbai, India, dec 2011. Leibniz-Zentrum für Informatik. URL: http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2011.375.
  7. Romain Brenguier, Guillermo A. Pérez, Jean-François Raskin, and Ocan Sankur. Admissibility in Quantitative Graph Games. In Akash Lal, S. Akshay, Saket Saurabh, and Sandeep Sen, editors, 36th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2016), volume 65 of Leibniz International Proceedings in Informatics (LIPIcs), pages 42:1-42:14, Dagstuhl, Germany, 2016. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik. URL: http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2016.42.
  8. Romain Brenguier, Jean-François Raskin, and Ocan Sankur. Assume-admissible synthesis. In Luca Aceto and David de Frutos-Escrig, editors, CONCUR, volume 42 of LIPIcs, pages 100-113. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2015. URL: http://dx.doi.org/10.4230/LIPIcs.CONCUR.2015.100.
  9. Romain Brenguier, Jean-François Raskin, and Ocan Sankur. Assume-admissible synthesis. Acta Inf., 54(1):41-83, 2017. URL: http://dx.doi.org/10.1007/s00236-016-0273-2.
  10. Romain Brenguier, Jean-François Raskin, and Mathieu Sassolas. The complexity of admissibility in omega-regular games. In CSL-LICS '14, 2014. ACM, 2014. URL: http://dx.doi.org/10.1145/2603088.2603143.
  11. Krishnendu Chatterjee, Luca de Alfaro, and Thomas A. Henzinger. Qualitative concurrent parity games. ACM Trans. Comput. Log., 12(4):28:1-28:51, 2011. URL: http://dx.doi.org/10.1145/1970398.1970404.
  12. Krishnendu Chatterjee and Thomas A. Henzinger. Assume-guarantee synthesis. In Tools and Algorithms for the Construction and Analysis of Systems, 13th International Conference, TACAS 2007, Held as Part of the Joint European Conferences on Theory and Practice of Software, ETAPS 2007 Braga, Portugal, March 24 - April 1, 2007, Proceedings, volume 4424 of Lecture Notes in Computer Science, pages 261-275. Springer, 2007. Google Scholar
  13. Werner Damm and Bernd Finkbeiner. Automatic compositional synthesis of distributed systems. In FM 2014: Formal Methods - 19th International Symposium, Singapore, May 12-16, 2014. Proceedings, volume 8442 of Lecture Notes in Computer Science, pages 179-193. Springer, 2014. Google Scholar
  14. Luca de Alfaro, Thomas A. Henzinger, and Orna Kupferman. Concurrent reachability games. Theor. Comput. Sci., 386(3):188-217, 2007. URL: http://dx.doi.org/10.1016/j.tcs.2007.07.008.
  15. Marco Faella. Admissible strategies in infinite games over graphs. In MFCS 2009, volume 5734 of Lecture Notes in Computer Science, pages 307-318. Springer, 2009. Google Scholar
  16. Dana Fisman, Orna Kupferman, and Yoad Lustig. Rational synthesis. In Tools and Algorithms for the Construction and Analysis of Systems, 16th International Conference, TACAS 2010, Held as Part of the Joint European Conferences on Theory and Practice of Software, ETAPS 2010, Paphos, Cyprus, March 20-28, 2010. Proceedings, volume 6015 of Lecture Notes in Computer Science, pages 190-204. Springer, 2010. Google Scholar
  17. Orna Kupferman, Giuseppe Perelli, and Moshe Y. Vardi. Synthesis with rational environments. In Multi-Agent Systems - 12th European Conference, EUMAS 2014, Prague, Czech Republic, December 18-19, 2014, Revised Selected Papers, pages 219-235. Springer, 2014. Google Scholar
  18. Jean-François Raskin, Krishnendu Chatterjee, Laurent Doyen, and Thomas A. Henzinger. Algorithms for omega-regular games with imperfect information. Logical Methods in Computer Science, 3(3), 2007. URL: http://dx.doi.org/10.2168/LMCS-3(3:4)2007.
  19. Moshe Y Vardi. Automatic verification of probabilistic concurrent finite state programs. In Foundations of Computer Science, 1985., 26th Annual Symposium on, pages 327-338. IEEE, 1985. Google Scholar