Document

# Near-Optimal Induced Universal Graphs for Bounded Degree Graphs

## File

LIPIcs.ICALP.2017.128.pdf
• Filesize: 0.55 MB
• 14 pages

## Cite As

Mikkel Abrahamsen, Stephen Alstrup, Jacob Holm, Mathias Bæk Tejs Knudsen, and Morten Stöckel. Near-Optimal Induced Universal Graphs for Bounded Degree Graphs. In 44th International Colloquium on Automata, Languages, and Programming (ICALP 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 80, pp. 128:1-128:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)
https://doi.org/10.4230/LIPIcs.ICALP.2017.128

## Abstract

A graph U is an induced universal graph for a family F of graphs if every graph in F is a vertex-induced subgraph of U. We give upper and lower bounds for the size of induced universal graphs for the family of graphs with n vertices of maximum degree D. Our new bounds improve several previous results except for the special cases where D is either near-constant or almost n/2. For constant even D Butler [Graphs and Combinatorics 2009] has shown O(n^(D/2)) and recently Alon and Nenadov [SODA 2017] showed the same bound for constant odd D. For constant D Butler also gave a matching lower bound. For generals graphs, which corresponds to D = n, Alon [Geometric and Functional Analysis, to appear] proved the existence of an induced universal graph with (1+o(1)) \cdot 2^((n-1)/2) vertices, leading to a smaller constant than in the previously best known bound of 16 * 2^(n/2) by Alstrup, Kaplan, Thorup, and Zwick [STOC 2015]. In this paper we give the following lower and upper bound of binom(floor(n/2))(floor(D/2)) * n^(-O(1)) and binom(floor(n/2))(floor(D/2)) * 2^(O(sqrt(D log D) * log(n/D))), respectively, where the upper bound is the main contribution. The proof that it is an induced universal graph relies on a randomized argument. We also give a deterministic upper bound of O(n^k / (k-1)!). These upper bounds are the best known when D <= n/2 - tilde-Omega(n^(3/4)) and either D is even and D = omega(1) or D is odd and D = omega(log n/log log n). In this range we improve asymptotically on the previous best known results by Butler [Graphs and Combinatorics 2009], Esperet, Arnaud and Ochem [IPL 2008], Adjiashvili and Rotbart [ICALP 2014], Alon and Nenadov [SODA 2017], and Alon [Geometric and Functional Analysis, to appear].
##### Keywords
• Bounded degree graphs
• Induced universal graphs
• Distributed computing

## Metrics

• Access Statistics
• Total Accesses (updated on a weekly basis)
0

## References

1. S. Abiteboul, H. Kaplan, and T. Milo. Compact labeling schemes for ancestor queries. In Proc. of the 12th Annual ACM-SIAM Symp. on Discrete Algorithms (SODA), pages 547-556, 2001.
2. M. Abrahamsen, S. Alstrup, J. Holm, M. B. T. Knudsen, and M. Stöckel. Near-optimal induced universal graphs for bounded degree graphs. CoRR, abs/1607.04911, 2016. URL: http://arxiv.org/abs/1607.04911.
3. D. Adjiashvili and N. Rotbart. Labeling schemes for bounded degree graphs. In 41st International Colloquium on Automata, Languages, and Programming (ICALP), pages 375-386, 2014.
4. N. Alon. private communication, 2016.
5. N. Alon. Asymptotically optimal induced universal graphs, 2016. [Online; accessed 5-July-2016]. URL: http://www.tau.ac.il/~nogaa/PDFS/induniv1.pdf.
6. N. Alon and M. Capalbo. Sparse universal graphs for bounded-degree graphs. Random Structures &Algorithms, 31(2):123-133, 2007.
7. N. Alon and M. Capalbo. Optimal universal graphs with deterministic embedding. In Proc. of the 19th Annual ACM-SIAM Symp. on Discrete Algorithms (SODA), pages 373-378, 2008.
8. N. Alon and R. Nenadov. Optimal induced universal graphs for bounded-degree graphs. In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2017, Barcelona, Spain, Hotel Porta Fira, January 16-19, pages 1149-1157, 2017. URL: http://dx.doi.org/10.1137/1.9781611974782.74.
9. N. Alon and J. H. Spencer. The probabilistic method. Wiley Publishing, 2000.
10. S. Alstrup, S. Dahlgaard, and M. B. T. Knudsen. Optimal induced universal graphs and labeling schemes for trees. In Proc. 56th Annual Symp. on Foundations of Computer Science (FOCS), 2015.
11. S. Alstrup, H. Kaplan, M. Thorup, and U. Zwick. Adjacency labeling schemes and induced-universal graphs. In Proc. of the 47th Annual ACM Symp. on Theory of Computing (STOC), pages 625-634, 2015.
12. S. Alstrup and T. Rauhe. Small induced-universal graphs and compact implicit graph representations. In Proc. 43rd Annual Symp. on Foundations of Computer Science (FOCS), pages 53-62, 2002.
13. L. Babai, F. R. K. Chung, P. Erdös R. L. Graham, and J. Spencer. On graphs which contain all sparse graphs. Ann. discrete Math., 12:21-26, 1982.
14. S. N. Bhatt, F. R. K. Chung, F. T. Leighton, and A. L. Rosenberg. Universal graphs for bounded-degree trees and planar graphs. SIAM J. Discrete Math., 2(2):145-155, 1989.
15. N. Bonichon, C. Gavoille, and A. Labourel. Short labels by traversal and jumping. In Structural Information and Communication Complexity, pages 143-156. Springer, 2006. Include proof for binary trees and caterpillars.
16. M. A. Breuer. Coding the vertexes of a graph. IEEE Trans. on Information Theory, IT-12:148-153, 1966.
17. M. A. Breuer and J. Folkman. An unexpected result on coding vertices of a graph. J. of Mathemathical analysis and applications, 20:583-600, 1967.
18. S. Butler. Induced-universal graphs for graphs with bounded maximum degree. Graphs and Combinatorics, 25(4):461-468, 2009. URL: http://dx.doi.org/10.1007/s00373-009-0860-x.
19. G. Chartrand, H. V. Kronk, and C. E. Wall. The point-arboricity of a graph. Israel J. of Mathematics, 6(2):169-175, 1968. URL: http://dx.doi.org/10.1007/BF02760181.
20. F. R. K. Chung. Universal graphs and induced-universal graphs. J. of Graph Theory, 14(4):443-454, 1990.
21. F. R. K. Chung and R. L. Graham. On graphs which contain all small trees. J. of combinatorial theory, Series B, 24(1):14-23, 1978.
22. F. R. K. Chung and R. L. Graham. On universal graphs. Ann. Acad. Sci., 319:136-140, 1979.
23. F. R. K. Chung and R. L. Graham. On universal graphs for spanning trees. J. London Math. Soc., 27:203-211, 1983.
24. F. R. K. Chung, R. L. Graham, and N. Pippenger. On graphs which contain all small trees ii. Colloquia Mathematica, pages 213-223, 1976.
25. E. Cohen, H. Kaplan, and T. Milo. Labeling dynamic XML trees. SIAM J. Comput., 39(5):2048-2074, 2010. URL: http://dx.doi.org/10.1137/070687633.
26. L. J. Cowen. Compact routing with minimum stretch. J. of Algorithms, 38:170-183, 2001. See also SODA'91.
27. T. Eilam, C. Gavoille, and D. Peleg. Compact routing schemes with low stretch factor. J. of Algorithms, 46(2):97-114, 2003. URL: http://dx.doi.org/10.1016/S0196-6774(03)00002-6.
28. P. Erdos and L. Lovász. Problems and results on 3-chromatic hypergraphs and some related questions. Infinite and finite sets, 10(2):609-627, 1975.
29. L. Esperet, A. Labourel, and P. Ochem. On induced-universal graphs for the class of bounded-degree graphs. Inf. Process. Lett., 108(5):255-260, 2008. URL: http://dx.doi.org/10.1016/j.ipl.2008.04.020.
30. P. Fraigniaud and C. Gavoille. Routing in trees. In 28^th International Colloquium on Automata, Languages and Programming (ICALP), pages 757-772, 2001.
31. P. Fraigniaud and A. Korman. On randomized representations of graphs using short labels. In Proc. of the 21st Annual Symp. on Parallelism in Algorithms and Architectures (SPAA), pages 131-137, 2009. URL: http://dx.doi.org/10.1145/1583991.1584031.
32. P. Fraigniaud and A. Korman. Compact ancestry labeling schemes for XML trees. In Proc. of the 21st annual ACM-SIAM Symp. on Discrete Algorithms (SODA), pages 458-466, 2010.
33. C. Gavoille and A. Labourel. Shorter implicit representation for planar graphs and bounded treewidth graphs. In Algorithms-ESA, pages 582-593. Springer, 2007.
34. C. Gavoille and D. Peleg. Compact and localized distributed data structures. Distributed Computing, 16(2-3):111-120, 2003. URL: http://dx.doi.org/10.1007/s00446-002-0073-5.
35. S. Kannan, M. Naor, and S. Rudich. Implicit representation of graphs. SIAM J. Disc. Math., 5(4):596-603, 1992. See also STOC'88.
36. H. Kaplan, T. Milo, and R. Shabo. A comparison of labeling schemes for ancestor queries. In Proc. of the 13th Annual ACM-SIAM Symp. on Discrete Algorithms (SODA), pages 954-963, 2002.
37. A. Korman. Labeling schemes for vertex connectivity. ACM Trans. Algorithms, 6(2):39:1-39:10, 2010. URL: http://dx.doi.org/10.1145/1721837.1721855.
38. A. Korman and D. Peleg. Labeling schemes for weighted dynamic trees. Inf. Comput., 205(12):1721-1740, 2007.
39. A. Liebenau and N. Wormald. Asymptotic enumeration of graphs by degree sequence, and the degree sequence of a random graph. arXiv preprint arXiv:1702.08373, 2017.
40. L. Lovasz. On decomposition of graphs. Studia Sci. Math. Hungar, 1:237-238, 1966.
41. L. Lovász and M.D. Plummer. Matching Theory. AMS Chelsea Publishing Series. American Mathematical Soc., 2009.
42. V. V. Lozin and G. Rudolf. Minimal universal bipartite graphs. Ars Comb., 84, 2007.
43. B. D. McKay and N. C. Wormald. Asymptotic enumeration by degree sequence of graphs of high degree. European Journal of Combinatorics, 11(6):565-580, 1990.
44. B. D. McKay and N. C. Wormald. Asymptotic enumeration by degree sequence of graphs with degreeso (n 1/2). Combinatorica, 11(4):369-382, 1991.
45. J. W. Moon. On minimal n-universal graphs. Proc. of the Glasgow Mathematical Association, 7(1):32-33, 1965.
46. J. W. Moon. Topics on tournaments. Holt, Rinehart and Winston, 1968.
47. J. H. Müller. Local structure in graph classes. PhD thesis, Georgia Institute of Technology, 1988.
48. D. Peleg. Informative labeling schemes for graphs. In Proc. 25th Symp. on Mathematical Foundations of Computer Science, pages 579-588, 2000.
49. R. Rado. Universal graphs and universal functions. Acta. Arith., 9:331-340, 1964.
50. N. Santoro and R. Khatib. Labeling and implicit routing in networks. The computer J., 28:5-8, 1985.
51. M. Thorup and U. Zwick. Approximate distance oracles. J. of the ACM, 52(1):1-24, 2005. See also STOC'01.