We consider the problem of maintaining an approximate maximum integral matching in a dynamic graph G, while the adversary makes changes to the edges of the graph. The goal is to maintain a (1+ε)-approximate maximum matching for constant ε > 0, while minimizing the update time. In the fully dynamic setting, where both edge insertion and deletions are allowed, Gupta and Peng (see [Manoj Gupta and Richard Peng, 2013]) gave an algorithm for this problem with an update time of O(√m/ε²). Motivated by the fact that the O_ε(√m) barrier is hard to overcome (see Henzinger, Krinninger, Nanongkai, and Saranurak [Henzinger et al., 2015]; Kopelowitz, Pettie, and Porat [Kopelowitz et al., 2016]), we study this problem in the decremental model, where the adversary is only allowed to delete edges. Recently, Bernstein, Probst-Gutenberg, and Saranurak (see [Bernstein et al., 2020]) gave an O(poly({log n}/ε)) update time decremental algorithm for this problem in bipartite graphs. However, beating O(√m) update time remained an open problem for general graphs. In this paper, we bridge the gap between bipartite and general graphs, by giving an O_ε(poly(log n)) update time algorithm that maintains a (1+ε)-approximate maximum integral matching under adversarial deletions. Our algorithm is randomized, but works against an adaptive adversary. Together with the work of Grandoni, Leonardi, Sankowski, Schwiegelshohn, and Solomon [Fabrizio Grandoni et al., 2019] who give an O_ε(1) update time algorithm for general graphs in the incremental (insertion-only) model, our result essentially completes the picture for partially dynamic matching.
@InProceedings{assadi_et_al:LIPIcs.ICALP.2022.11, author = {Assadi, Sepehr and Bernstein, Aaron and Dudeja, Aditi}, title = {{Decremental Matching in General Graphs}}, booktitle = {49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)}, pages = {11:1--11:19}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-235-8}, ISSN = {1868-8969}, year = {2022}, volume = {229}, editor = {Boja\'{n}czyk, Miko{\l}aj and Merelli, Emanuela and Woodruff, David P.}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2022.11}, URN = {urn:nbn:de:0030-drops-163528}, doi = {10.4230/LIPIcs.ICALP.2022.11}, annote = {Keywords: Dynamic algorithms, matching, primal-dual algorithms} }
Feedback for Dagstuhl Publishing