Simulating Markovian Open Quantum Systems Using Higher-Order Series Expansion

Authors Xiantao Li, Chunhao Wang

Thumbnail PDF


  • Filesize: 0.67 MB
  • 20 pages

Document Identifiers

Author Details

Xiantao Li
  • Department of Mathematics, Pennsylvania State University, University Park, PA, USA
Chunhao Wang
  • Department of Computer Science and Engineering, Pennsylvania State University, University Park, PA, USA


We thank the anonymous reviewers for the valuable comments.

Cite AsGet BibTex

Xiantao Li and Chunhao Wang. Simulating Markovian Open Quantum Systems Using Higher-Order Series Expansion. In 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 261, pp. 87:1-87:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


We present an efficient quantum algorithm for simulating the dynamics of Markovian open quantum systems. The performance of our algorithm is similar to the previous state-of-the-art quantum algorithm, i.e., it scales linearly in evolution time and poly-logarithmically in inverse precision. However, our algorithm is conceptually cleaner, and it only uses simple quantum primitives without compressed encoding. Our approach is based on a novel mathematical treatment of the evolution map, which involves a higher-order series expansion based on Duhamel’s principle and approximating multiple integrals using scaled Gaussian quadrature. Our method easily generalizes to simulating quantum dynamics with time-dependent Lindbladians. Furthermore, our method of approximating multiple integrals using scaled Gaussian quadrature could potentially be used to produce a more efficient approximation of time-ordered integrals, and therefore can simplify existing quantum algorithms for simulating time-dependent Hamiltonians based on a truncated Dyson series.

Subject Classification

ACM Subject Classification
  • Theory of computation → Quantum computation theory
  • Quantum algorithms
  • open quantum systems
  • Lindblad simulation


  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    PDF Downloads


  1. Robert Alicki. The quantum open system as a model of the heat engine. Journal of Physics A: Mathematical and General, 12(5):L103, 1979. Google Scholar
  2. Robert Alicki and David Gelbwaser-Klimovsky. Non-equilibrium quantum heat machines. New Journal of Physics, 17(11):115012, 2015. Google Scholar
  3. Dominic W Berry, Andrew M Childs, Richard Cleve, Robin Kothari, and Rolando D Somma. Simulating Hamiltonian dynamics with a truncated Taylor series. Physical Review Letters, 114(9), 2015. URL:
  4. Dominic W Berry, Andrew M Childs, Richard Cleve, Robin Kothari, and Rolando D Somma. Exponential improvement in precision for simulating sparse Hamiltonians. Forum of Mathematics, Sigma, 5, 2017. URL:
  5. Dominic W Berry, Andrew M Childs, and Robin Kothari. Hamiltonian simulation with nearly optimal dependence on all parameters. In Proceedings of the 56th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2015), 2015. Google Scholar
  6. Yu Cao and Jianfeng Lu. Structure-preserving numerical schemes for Lindblad equations. arXiv:2103.01194 [quant-ph], March 2021. URL:
  7. Andrew M Childs and Tongyang Li. Efficient simulation of sparse Markovian quantum dynamics. Quantum Information & Computation, 17(11&12):0901-0947, 2017. Google Scholar
  8. Andrew M Childs, Dmitri Maslov, Yunseong Nam, Neil J Ross, and Yuan Su. Toward the first quantum simulation with quantum speedup. Proceedings of the National Academy of Sciences, 115(38):9456-9461, 2018. Google Scholar
  9. Richard Cleve and Chunhao Wang. Efficient quantum algorithms for simulating Lindblad evolution. In 44th International Colloquium on Automata, Languages, and Programming, (ICALP 2017), pages 17:1-17:14, 2017. Google Scholar
  10. Wibe A de Jong, Kyle Lee, James Mulligan, Mateusz Płoskoń, Felix Ringer, and Xiaojun Yao. Quantum simulation of nonequilibrium dynamics and thermalization in the Schwinger model. Physical Review D, 106(5):054508, 2022. Google Scholar
  11. Wibe A de Jong, Mekena Metcalf, James Mulligan, Mateusz Płoskoń, Felix Ringer, and Xiaojun Yao. Quantum simulation of open quantum systems in heavy-ion collisions. Physical Review D, 104(5):L051501, 2021. Google Scholar
  12. Ross Dorner, John Goold, and Vlatko Vedral. Towards quantum simulations of biological information flow. Interface Focus, 2(4):522-528, 2012. URL:
  13. Richard P. Feynman. Simulating physics with computers. International Journal of Theoretical Physics, 21(6-7):467-488, 1982. URL:
  14. András Gilyén, Yuan Su, Guang Hao Low, and Nathan Wiebe. Quantum singular value transformation and beyond: exponential improvements for quantum matrix arithmetics. In Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing, pages 193-204. ACM, 2019. URL:
  15. Vittorio Gorini, Andrzej Kossakowski, and Ennackal Chandy George Sudarshan. Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics, 17(5):821-825, 1976. Google Scholar
  16. Susana F. Huelga and Martin B. Plenio. Vibrations, quanta and biology. Contemporary Physics, 54(4):181-207, 2013. URL:
  17. Michael J. Kastoryano and Fernando G. S. L. Brandão. Quantum Gibbs samplers: the commuting case. Communications in Mathematical Physics, 344(3):915-957, 2016. URL:
  18. Michael J. Kastoryano, Florentin Reiter, and Anders S. Sørensen. Dissipative preparation of entanglement in optical cavities. Physical Review Letters, 106(9), 2011. URL:
  19. Mária Kieferová, Artur Scherer, and Dominic W Berry. Simulating the dynamics of time-dependent hamiltonians with a truncated dyson series. Physical Review A, 99(4):042314, 2019. Google Scholar
  20. Martin Kliesch, Thomas Barthel, Christian Gogolin, Michael J Kastoryano, and Jens Eisert. Dissipative quantum Church-Turing theorem. Physical Review Letters, 107(12), 2011. URL:
  21. Christiane P Koch. Controlling open quantum systems: tools, achievements, and limitations. Journal of Physics: Condensed Matter, 28(21):213001, 2016. Google Scholar
  22. Ronnie Kosloff and Amikam Levy. Quantum heat engines and refrigerators: Continuous devices. Annual Review of Physical Chemistry, 65:365-393, 2014. Google Scholar
  23. Barbara Kraus, Hans P. Büchler, Sebastian Diehl, Adrian Kantian, Andrea Micheli, and Peter Zoller. Preparation of entangled states by quantum Markov processes. Physical Review A, 78(4), 2008. URL:
  24. Anthony J. Leggett, Sudip Chakravarty, Alan T. Dorsey, Matthew P. A. Fisher, Anupam Garg, and Wilhelm Zwerger. Dynamics of the dissipative two-state system. Reviews of Modern Physics, 59(1):1-85, 1987. URL:
  25. Amikam Levy, Anthony Kiely, Juan Gonzalo Muga, Ronnie Kosloff, and Erik Torrontegui. Noise resistant quantum control using dynamical invariants. New Journal of Physics, 20(2):025006, 2018. Google Scholar
  26. Xiantao Li and Chunhao Wang. Succinct description and efficient simulation of non-markovian open quantum systems. arXiv preprint, 2021. URL:
  27. Goran Lindblad. On the generators of quantum dynamical semigroups. Communications in Mathematical Physics, 48(2):119-130, 1976. Google Scholar
  28. Guang Hao Low and Isaac L Chuang. Optimal Hamiltonian simulation by quantum signal processing. Physical Review Letters, 118(1), 2017. URL:
  29. Easwar Magesan, Daniel Puzzuoli, Christopher E. Granade, and David G. Cory. Modeling quantum noise for efficient testing of fault-tolerant circuits. Physical Review A, 87(1), 2013. URL:
  30. Volkhard May and Oliver Kühn. Charge and Energy Transfer Dynamics in Molecular Systems. John Wiley & Sons, 2008. Google Scholar
  31. Sarah Mostame, Patrick Rebentrost, Alexander Eisfeld, Andrew J Kerman, Dimitris I. Tsomokos, and Alán Aspuru-Guzik. Quantum simulator of an open quantum system using superconducting qubits: exciton transport in photosynthetic complexes. New Journal of Physics, 14(10):105013, 2012. URL:
  32. Abraham Nitzan. Chemical Dynamics in Condensed Phases: Relaxation, Transfer and Reactions in Condensed Molecular Systems. Oxford University Press, 2006. Google Scholar
  33. Matthew Otten and Stephen K Gray. Accounting for errors in quantum algorithms via individual error reduction. npj Quantum Information, 5(1):1-6, 2019. Google Scholar
  34. Martin B Plenio and Peter L Knight. The quantum-jump approach to dissipative dynamics in quantum optics. Reviews of Modern Physics, 70(1):101, 1998. Google Scholar
  35. Patrick Rall, Chunhao Wang, and Pawel Wocjan. Thermal state preparation via rounding promises. arXiv preprint, 2022. URL:
  36. Florentin Reiter, David Reeb, and Anders S Sørensen. Scalable dissipative preparation of many-body entanglement. Physical Review Letters, 117(4), 2016. URL:
  37. Yair Rezek and Ronnie Kosloff. Irreversible performance of a quantum harmonic heat engine. New Journal of Physics, 8(5):83, 2006. Google Scholar
  38. Jinzhao Sun, Xiao Yuan, Takahiro Tsunoda, Vlatko Vedral, Simon C Benjamin, and Suguru Endo. Mitigating realistic noise in practical noisy intermediate-scale quantum devices. Physical Review Applied, 15(3):034026, 2021. Google Scholar
  39. Nishchay Suri, Felix C Binder, Bhaskaran Muralidharan, and Sai Vinjanampathy. Speeding up thermalisation via open quantum system variational optimisation. The European Physical Journal Special Topics, 227(3):203-216, 2018. Google Scholar
  40. Sabine Tornow, Wolfgang Gehrke, and Udo Helmbrecht. Non-equilibrium dynamics of a dissipative two-site Hubbard model simulated on IBM quantum computers. Journal of Physics A: Mathematical and Theoretical, 55(24):245302, 2022. Google Scholar
  41. Frank Verstraete, Michael M. Wolf, and Juan Ignacio Cirac. Quantum computation and quantum-state engineering driven by dissipation. Nature Physics, 5(9):633-636, 2009. URL:
  42. Ulrich Weiss. Quantum Dissipative Systems. World Scientific, 2012. Google Scholar
  43. Chunhao Wang Xiantao Li. Simulating Markovian open quantum systems using higher-order series expansion. arXiv preprint, 2022. URL: