LIPIcs.ICALP.2024.36.pdf
- Filesize: 0.83 MB
- 18 pages
We study the notion of k-stabilizer universal quantum state, that is, an n-qubit quantum state, such that it is possible to induce any stabilizer state on any k qubits, by using only local operations and classical communications. These states generalize the notion of k-pairable states introduced by Bravyi et al., and can be studied from a combinatorial perspective using graph states and k-vertex-minor universal graphs. First, we demonstrate the existence of k-stabilizer universal graph states that are optimal in size with n = Θ(k²) qubits. We also provide parameters for which a random graph state on Θ(k²) qubits is k-stabilizer universal with high probability. Our second contribution consists of two explicit constructions of k-stabilizer universal graph states on n = O(k⁴) qubits. Both rely upon the incidence graph of the projective plane over a finite field 𝔽_q. This provides a major improvement over the previously known explicit construction of k-pairable graph states with n = O(2^{3k}), bringing forth a new and potentially powerful family of multipartite quantum resources.
Feedback for Dagstuhl Publishing