Vertex-Minor Universal Graphs for Generating Entangled Quantum Subsystems

Authors Maxime Cautrès , Nathan Claudet , Mehdi Mhalla , Simon Perdrix , Valentin Savin , Stéphan Thomassé



PDF
Thumbnail PDF

File

LIPIcs.ICALP.2024.36.pdf
  • Filesize: 0.83 MB
  • 18 pages

Document Identifiers

Author Details

Maxime Cautrès
  • Université Grenoble Alpes, CEA-Léti, F-38054 Grenoble, France
  • École Normale Supérieure de Lyon, F-69007 Lyon, France
Nathan Claudet
  • Inria Mocqua, LORIA, CNRS, Université de Lorraine, F-54000 Nancy, France
Mehdi Mhalla
  • Université Grenoble Alpes, CNRS, Grenoble INP, LIG, F-38000 Grenoble, France
Simon Perdrix
  • Inria Mocqua, LORIA, CNRS, Université de Lorraine, F-54000 Nancy, France
Valentin Savin
  • Université Grenoble Alpes, CEA-Léti, F-38054 Grenoble, France
Stéphan Thomassé
  • Université de Lyon, École Normale Supérieure de Lyon, UCBL, CNRS, LIP, F-69007 Lyon, France

Cite AsGet BibTex

Maxime Cautrès, Nathan Claudet, Mehdi Mhalla, Simon Perdrix, Valentin Savin, and Stéphan Thomassé. Vertex-Minor Universal Graphs for Generating Entangled Quantum Subsystems. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 36:1-36:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
https://doi.org/10.4230/LIPIcs.ICALP.2024.36

Abstract

We study the notion of k-stabilizer universal quantum state, that is, an n-qubit quantum state, such that it is possible to induce any stabilizer state on any k qubits, by using only local operations and classical communications. These states generalize the notion of k-pairable states introduced by Bravyi et al., and can be studied from a combinatorial perspective using graph states and k-vertex-minor universal graphs. First, we demonstrate the existence of k-stabilizer universal graph states that are optimal in size with n = Θ(k²) qubits. We also provide parameters for which a random graph state on Θ(k²) qubits is k-stabilizer universal with high probability. Our second contribution consists of two explicit constructions of k-stabilizer universal graph states on n = O(k⁴) qubits. Both rely upon the incidence graph of the projective plane over a finite field 𝔽_q. This provides a major improvement over the previously known explicit construction of k-pairable graph states with n = O(2^{3k}), bringing forth a new and potentially powerful family of multipartite quantum resources.

Subject Classification

ACM Subject Classification
  • Theory of computation → Quantum information theory
  • Theory of computation → Quantum communication complexity
  • Mathematics of computing → Graph theory
Keywords
  • Quantum networks
  • graph states
  • vertex-minors
  • k-pairability

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Sara Bartolucci, Patrick Birchall, Hector Bombin, Hugo Cable, Chris Dawson, Mercedes Gimeno-Segovia, Eric Johnston, Konrad Kieling, Naomi Nickerson, Mihir Pant, et al. Fusion-based quantum computation. Nature Communications, 14(1):912, 2023. URL: https://doi.org/10.1038/s41467-023-36493-1.
  2. Sergey Bravyi, Yash Sharma, Mario Szegedy, and Ronald de Wolf. Generating k EPR-pairs from an n-party resource state. Quantum Information Processing, 2023. URL: https://arxiv.org/abs/2211.06497.
  3. Maxime Cautrès, Nathan Claudet, Mehdi Mhalla, Simon Perdrix, Valentin Savin, and Stéphan Thomassé. Vertex-minor universal graphs for generating entangled quantum subsystems, 2024. URL: https://arxiv.org/abs/2402.06260.
  4. Kai Chen and Hoi-Kwong Lo. Multi-partite quantum cryptographic protocols with noisy GHZ states. Quantum Information and Computation, 7(8), November 2007. URL: https://doi.org/10.26421/QIC7.8-1.
  5. Matthias Christandl, Vladimir Lysikov, Vincent Steffan, Albert H Werner, and Freek Witteveen. The resource theory of tensor networks, 2023. URL: https://arxiv.org/abs/2307.07394.
  6. Nathan Claudet, Mehdi Mhalla, and Simon Perdrix. Small k-pairable states, 2023. URL: https://arxiv.org/abs/2309.09956.
  7. Patricia Contreras-Tejada, Carlos Palazuelos, and Julio I. de Vicente. Asymptotic survival of genuine multipartite entanglement in noisy quantum networks depends on the topology. Physical Review Letters, 128(22), 2022. URL: https://doi.org/10.1103/physrevlett.128.220501.
  8. Axel Dahlberg, Jonas Helsen, and Stephanie Wehner. How to transform graph states using single-qubit operations: computational complexity and algorithms. Quantum Science and Technology, 5(4):045016, September 2020. URL: https://doi.org/10.1088/2058-9565/aba763.
  9. Axel Dahlberg, Jonas Helsen, and Stephanie Wehner. Transforming graph states to Bell-pairs is NP-Complete. Quantum, 4:348, October 2020. URL: https://doi.org/10.22331/q-2020-10-22-348.
  10. Axel Dahlberg and Stephanie Wehner. Transforming graph states using single-qubit operations. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 376(2123):20170325, 2018. URL: https://doi.org/10.1098/rsta.2017.0325.
  11. Maarten Van den Nest, Jeroen Dehaene, and Bart De Moor. Graphical description of the action of local clifford transformations on graph states. Physical Review A, 69(2), February 2004. URL: https://doi.org/10.1103/physreva.69.022316.
  12. Gang Du, Tao Shang, and Jian-wei Liu. Quantum coordinated multi-point communication based on entanglement swapping. Quantum Information Processing, 16, March 2017. URL: https://doi.org/10.1007/s11128-017-1558-2.
  13. Alex Fischer and Don Towsley. Distributing graph states across quantum networks. In IEEE International Conference on Quantum Computing and Engineering (QCE), pages 324-333, 2021. URL: https://doi.org/10.1109/QCE52317.2021.00049.
  14. Sobhan Ghanbari, Jie Lin, Benjamin MacLellan, Luc Robichaud, Piotr Roztocki, and Hoi-Kwong Lo. Optimization of deterministic photonic graph state generation via local operations, 2024. URL: https://arxiv.org/abs/2401.00635.
  15. Daniel Gottesman. The heisenberg representation of quantum computers, 1998. URL: https://arxiv.org/abs/quant-ph/9807006.
  16. Frederik Hahn, Anna Pappa, and Jens Eisert. Quantum network routing and local complementation. npj Quantum Information, 5(1):1-7, 2019. URL: https://doi.org/10.1038/s41534-019-0191-6.
  17. Marc Hein, Wolfgang Dür, Jens Eisert, Robert Raussendorf, Maarten Van den Nest, and Hans J. Briegel. Entanglement in graph states and its applications, 2006. URL: https://arxiv.org/abs/quant-ph/0602096.
  18. Jessica Illiano, Michele Viscardi, Seid Koudia, Marcello Caleffi, and Angela Sara Cacciapuoti. Quantum internet: from medium access control to entanglement access control, 2022. URL: https://arxiv.org/abs/2205.11923.
  19. Jérôme Javelle, Mehdi Mhalla, and Simon Perdrix. New protocols and lower bounds for quantum secret sharing with graph states. In Conference on Quantum Computation, Communication, and Cryptography, pages 1-12. Springer, 2012. URL: https://arxiv.org/abs/1109.1487.
  20. Donggyu Kim and Sang-il Oum. Vertex-minors of graphs: A survey, October 2023. URL: https://dimag.ibs.re.kr/home/sangil/wp-content/uploads/sites/2/2023/10/2023vertexminors-survey-revised.pdf.
  21. Seok-Hyung Lee and Hyunseok Jeong. Graph-theoretical optimization of fusion-based graph state generation. Quantum, 7:1212, December 2023. URL: https://doi.org/10.22331/q-2023-12-20-1212.
  22. Chao-Yang Lu, Xiao-Qi Zhou, Otfried Gühne, Wei-Bo Gao, Jin Zhang, Zhen-Sheng Yuan, Alexander Goebel, Tao Yang, and Jian-Wei Pan. Experimental entanglement of six photons in graph states. Nature physics, 3(2):91-95, 2007. Google Scholar
  23. Damian Markham and Barry C. Sanders. Graph states for quantum secret sharing. Physical Review A, 78:042309, 2008. URL: https://doi.org/10.1103/PhysRevA.78.042309.
  24. Clément Meignant, Damian Markham, and Frédéric Grosshans. Distributing graph states over arbitrary quantum networks. Physical Review A, 100:052333, November 2019. URL: https://doi.org/10.1103/PhysRevA.100.052333.
  25. Jorge Miguel-Ramiro, Alexander Pirker, and Wolfgang Dür. Optimized quantum networks. Quantum, 7:919, February 2023. URL: https://doi.org/10.22331/q-2023-02-09-919.
  26. Mihir Pant, Hari Krovi, Don Towsley, Leandros Tassiulas, Liang Jiang, Prithwish Basu, Dirk Englund, and Saikat Guha. Routing entanglement in the quantum internet. npj Quantum Information, 5(1):1-9, 2019. URL: https://doi.org/10.1038/s41534-019-0139-x.
  27. Eddie Schoute, Laura Mancinska, Tanvirul Islam, Iordanis Kerenidis, and Stephanie Wehner. Shortcuts to quantum network routing, 2016. URL: https://arxiv.org/abs/1610.05238.
  28. Péter Vrana and Matthias Christandl. Entanglement distillation from Greenberger-Horne-Zeilinger shares. Communications in Mathematical Physics, 352:621-627, 2017. URL: https://arxiv.org/abs/1603.03964.