We consider a generalized poset sorting problem (GPS), in which we are given a query graph G = (V, E) and an unknown poset 𝒫(V, ≺) that is defined on the same vertex set V, and the goal is to make as few queries as possible to edges in G in order to fully recover 𝒫, where each query (u, v) returns the relation between u, v, i.e., u ≺ v, v ≺ u or u ̸ ∼ v. This generalizes both the poset sorting problem [Faigle et al., SICOMP 88] and the generalized sorting problem [Huang et al., FOCS 11]. We give algorithms with Õ(n poly(k)) query complexity when G is a complete bipartite graph or G is stochastic under the Erdős-Rényi model, where k is the width of the poset, and these generalize [Daskalakis et al., SICOMP 11] which only studies complete graph G. Both results are based on a unified framework that reduces the poset sorting to partitioning the vertices with respect to a given pivot element, which may be of independent interest. Moreover, we also propose novel algorithms to implement this partition oracle. Notably, we suggest a randomized BFS with vertex skipping for the stochastic G, and it yields a nearly-tight bound even for the special case of generalized sorting (for stochastic G) which is comparable to the main result of a recent work [Kuszmaul et al., FOCS 21] but is conceptually different and simplified. Our study of GPS also leads to a new Õ(n^{1 - 1 / (2W)}) competitive ratio for the so-called weighted generalized sorting problem where W is the number of distinct weights in the query graph. This problem was considered as an open question in [Charikar et al., JCSS 02], and our result makes important progress as it yields the first nontrivial sublinear ratio for general weighted query graphs (for any bounded W). We obtain this via an Õ(nk + n^{1.5}) query complexity algorithm for the case where every edge in G is guaranteed to be comparable in the poset, which generalizes a Õ(n^{1.5}) bound for generalized sorting [Huang et al., FOCS 11].
@InProceedings{jiang_et_al:LIPIcs.ICALP.2024.92, author = {Jiang, Shaofeng H.-C. and Wang, Wenqian and Zhang, Yubo and Zhang, Yuhao}, title = {{Algorithms for the Generalized Poset Sorting Problem}}, booktitle = {51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)}, pages = {92:1--92:15}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-322-5}, ISSN = {1868-8969}, year = {2024}, volume = {297}, editor = {Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.92}, URN = {urn:nbn:de:0030-drops-202359}, doi = {10.4230/LIPIcs.ICALP.2024.92}, annote = {Keywords: sorting, poset sorting, generalized sorting} }
Feedback for Dagstuhl Publishing