We show that for any fixed integer k ⩾ 0, there exists an algorithm that computes the diameter and the eccentricies of all vertices of an input unweighted, undirected n-vertex graph of Euler genus at most k in time 𝒪_k(n^{2-1/25}). Furthermore, for the more general class of graphs that can be constructed by clique-sums from graphs that are of Euler genus at most k after deletion of at most k vertices, we show an algorithm for the same task that achieves the running time bound 𝒪_k(n^{2-1/356} log^{6k} n). Up to today, the only known subquadratic algorithms for computing the diameter in those graph classes are that of [Ducoffe, Habib, Viennot; SICOMP 2022], [Le, Wulff-Nilsen; SODA 2024], and [Duraj, Konieczny, Potępa; ESA 2024]. These algorithms work in the more general setting of K_h-minor-free graphs, but the running time bound is 𝒪_h(n^{2-c_h}) for some constant c_h > 0 depending on h. That is, our savings in the exponent of the polynomial function of n, as compared to the naive quadratic algorithm, are independent of the parameter k. The main technical ingredient of our work is an improved bound on the number of distance profiles, as defined in [Le, Wulff-Nilsen; SODA 2024], in graphs of bounded Euler genus.
@InProceedings{kluk_et_al:LIPIcs.ICALP.2025.109, author = {Kluk, Kacper and Pilipczuk, Marcin and Pilipczuk, Micha{\l} and Stamoulis, Giannos}, title = {{Faster Diameter Computation in Graphs of Bounded Euler Genus}}, booktitle = {52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)}, pages = {109:1--109:19}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-372-0}, ISSN = {1868-8969}, year = {2025}, volume = {334}, editor = {Censor-Hillel, Keren and Grandoni, Fabrizio and Ouaknine, Jo\"{e}l and Puppis, Gabriele}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2025.109}, URN = {urn:nbn:de:0030-drops-234869}, doi = {10.4230/LIPIcs.ICALP.2025.109}, annote = {Keywords: Diameter, eccentricity, subquadratic algorithms, surface-embeddable graphs} }
Feedback for Dagstuhl Publishing