Given a directed graph G with n vertices and m edges, a parameter k and two disjoint subsets S,T ⊆ V(G), we show that the number of all-subsets important separators, which is the number of A-B important vertex separators of size at most k over all A ⊆ S and B ⊆ T, is at most β(|S|, |T|, k) = 4^k binom(|S|, ≤ k) binom(|T|, ≤ 2k), where binom(x, ≤ c) = ∑_{i = 1}^c binom(x,i), and that they can be enumerated in time 𝒪(β(|S|,|T|,k)k²(m+n)). This is a generalization of the folklore result stating that the number of A-B important separators for two fixed sets A and B is at most 4^k (first implicitly shown by Chen, Liu and Lu Algorithmica '09). From this result, we obtain the following applications: 1) We give a construction for detection sets and sample sets in directed graphs, generalizing the results of Kleinberg (Internet Mathematics' 03) and Feige and Mahdian (STOC' 06) to directed graphs. 2) Via our new sample sets, we give the first FPT algorithm for finding balanced separators in directed graphs parameterized by k, the size of the separator. Our algorithm runs in time 2^{𝒪(k)} ⋅ (m + n). 3) Additionally, we show a 𝒪(√{log k}) approximation algorithm for finding balanced separators in directed graphs in polynomial time. This improves the best known approximation guarantee of 𝒪(√{log n}) and matches the known guarantee in undirected graphs by Feige, Hajiaghayi and Lee (SICOMP' 08). 4) Finally, using our algorithm for listing all-subsets important separators, we give a deterministic construction of vertex cut sparsifiers in directed graphs when we are interested in preserving min-cuts of size upto c between bipartitions of the terminal set. Our algorithm constructs a sparsifier of size 𝒪(binom(t, ≤ 3c)2^{𝒪(c)}) and runs in time 𝒪(binom(t, ≤ 3c) 2^{𝒪(c)}(m + n)), where t is the number of terminals, and the sparsifier additionally preserves the set of important separators of size at most c between bipartitions of the terminals.
@InProceedings{anand_et_al:LIPIcs.ICALP.2025.12, author = {Anand, Aditya and Lee, Euiwoong and Li, Jason and Saranurak, Thatchaphol}, title = {{All-Subsets Important Separators with Applications to Sample Sets, Balanced Separators and Vertex Sparsifiers in Directed Graphs}}, booktitle = {52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)}, pages = {12:1--12:20}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-372-0}, ISSN = {1868-8969}, year = {2025}, volume = {334}, editor = {Censor-Hillel, Keren and Grandoni, Fabrizio and Ouaknine, Jo\"{e}l and Puppis, Gabriele}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2025.12}, URN = {urn:nbn:de:0030-drops-233892}, doi = {10.4230/LIPIcs.ICALP.2025.12}, annote = {Keywords: directed graphs, important separators, sample sets, balanced separators} }
Feedback for Dagstuhl Publishing