For a set M of m elements, we define a decreasing chain of classes of normalized monotone-increasing valuation functions from 2^M to ℝ_{≥ 0}, parameterized by an integer q ∈ [2,m]. For a given q, we refer to the class as q-partitioning. A valuation function is subadditive if and only if it is 2-partitioning, and fractionally subadditive if and only if it is m-partitioning. Thus, our chain establishes an interpolation between subadditive and fractionally subadditive valuations. We show that this interpolation is smooth (q-partitioning valuations are "nearly" (q-1)-partitioning in a precise sense, Theorem 6), interpretable (the definition arises by analyzing the core of a cost-sharing game, à la the Bondareva-Shapley Theorem for fractionally subadditive valuations, Section 3.1), and non-trivial (the class of q-partitioning valuations is distinct for all q, Proposition 3). For domains where provable separations exist between subadditive and fractionally subadditive, we interpolate the stronger guarantees achievable for fractionally subadditive valuations to all q ∈ {2,…, m}. Two highlights are the following: 1) An Ω ((log log q)/(log log m))-competitive posted price mechanism for q-partitioning valuations. Note that this matches asymptotically the state-of-the-art for both subadditive (q = 2) [Paul Dütting et al., 2020], and fractionally subadditive (q = m) [Feldman et al., 2015]. 2) Two upper-tail concentration inequalities on 1-Lipschitz, q-partitioning valuations over independent items. One extends the state-of-the-art for q = m to q < m, the other improves the state-of-the-art for q = 2 for q > 2. Our concentration inequalities imply several corollaries that interpolate between subadditive and fractionally subadditive, for example: 𝔼[v(S)] ≤ (1 + 1/log q)Median[v(S)] + O(log q). To prove this, we develop a new isoperimetric inequality using Talagrand’s method of control by q points, which may be of independent interest. We also discuss other probabilistic inequalities and game-theoretic applications of q-partitioning valuations, and connections to subadditive MPH-k valuations [Tomer Ezra et al., 2019].
@InProceedings{bangachev_et_al:LIPIcs.ICALP.2025.18, author = {Bangachev, Kiril and Weinberg, S. Matthew}, title = {{q-Partitioning Valuations: Exploring the Space Between Subadditive and Fractionally Subadditive Valuations}}, booktitle = {52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)}, pages = {18:1--18:20}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-372-0}, ISSN = {1868-8969}, year = {2025}, volume = {334}, editor = {Censor-Hillel, Keren and Grandoni, Fabrizio and Ouaknine, Jo\"{e}l and Puppis, Gabriele}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2025.18}, URN = {urn:nbn:de:0030-drops-233956}, doi = {10.4230/LIPIcs.ICALP.2025.18}, annote = {Keywords: Subadditive Functions, Fractionally Subadditive Functions, Posted Price Mechanisms, Concentration Inequalities} }
Feedback for Dagstuhl Publishing