Despite there being significant work on developing spectral- [Chan et al., 2018; Lau et al., 2023; Kwok et al., 2022], and metric-embedding-based [Louis and Makarychev, 2016] approximation algorithms for hypergraph conductance, little is known regarding the approximability of other hypergraph partitioning objectives. This work proposes algorithms for a general model of hypergraph partitioning that unifies both undirected and directed versions of many well-studied partitioning objectives. The first contribution of this paper introduces polymatroidal cut functions, a large class of cut functions amenable to approximation algorithms via metric embeddings and routing multicommodity flows. We demonstrate a simple O(√{log n})-approximation, where n is the number of vertices in the hypergraph, for these problems by rounding relaxations to metrics of negative-type. The second contribution of this paper generalizes the cut-matching game framework of Khandekar et al. [Khandekar et al., 2007] to tackle polymatroidal cut functions. This yields an almost-linear time O(log n)-approximation algorithm for standard versions of undirected and directed hypergraph partitioning [Kwok et al., 2022]. A technical contribution of our construction is a novel cut-matching game, which greatly relaxes the set of allowed actions by the cut player and allows for the use of approximate s-t maximum flows by the matching player. We believe this to be of independent interest.
@InProceedings{chen_et_al:LIPIcs.ICALP.2025.49, author = {Chen, Antares and Orecchia, Lorenzo and Tani, Erasmo}, title = {{Submodular Hypergraph Partitioning: Metric Relaxations and Fast Algorithms via an Improved Cut-Matching Game}}, booktitle = {52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)}, pages = {49:1--49:16}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-372-0}, ISSN = {1868-8969}, year = {2025}, volume = {334}, editor = {Censor-Hillel, Keren and Grandoni, Fabrizio and Ouaknine, Jo\"{e}l and Puppis, Gabriele}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2025.49}, URN = {urn:nbn:de:0030-drops-234261}, doi = {10.4230/LIPIcs.ICALP.2025.49}, annote = {Keywords: Hypergraph Partitioning, Cut Improvement, Cut-Matching Game} }
Feedback for Dagstuhl Publishing