Finite-Cliquewidth Sets of Existential Rules: Toward a General Criterion for Decidable yet Highly Expressive Querying

Authors Thomas Feller , Tim S. Lyon , Piotr Ostropolski-Nalewaja , Sebastian Rudolph



PDF
Thumbnail PDF

File

LIPIcs.ICDT.2023.18.pdf
  • Filesize: 0.91 MB
  • 18 pages

Document Identifiers

Author Details

Thomas Feller
  • Technische Universität Dresden, Germany
Tim S. Lyon
  • Technische Universität Dresden, Germany
Piotr Ostropolski-Nalewaja
  • Technische Universität Dresden, Germany
  • University of Wrocław, Poland
Sebastian Rudolph
  • Technische Universität Dresden, Germany

Cite AsGet BibTex

Thomas Feller, Tim S. Lyon, Piotr Ostropolski-Nalewaja, and Sebastian Rudolph. Finite-Cliquewidth Sets of Existential Rules: Toward a General Criterion for Decidable yet Highly Expressive Querying. In 26th International Conference on Database Theory (ICDT 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 255, pp. 18:1-18:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)
https://doi.org/10.4230/LIPIcs.ICDT.2023.18

Abstract

In our pursuit of generic criteria for decidable ontology-based querying, we introduce finite-cliquewidth sets (fcs) of existential rules, a model-theoretically defined class of rule sets, inspired by the cliquewidth measure from graph theory. By a generic argument, we show that fcs ensures decidability of entailment for a sizable class of queries (dubbed DaMSOQs) subsuming conjunctive queries (CQs). The fcs class properly generalizes the class of finite-expansion sets (fes), and for signatures of arity ≤ 2, the class of bounded-treewidth sets (bts). For higher arities, bts is only indirectly subsumed by fcs by means of reification. Despite the generality of fcs, we provide a rule set with decidable CQ entailment (by virtue of first-order-rewritability) that falls outside fcs, thus demonstrating the incomparability of fcs and the class of finite-unification sets (fus). In spite of this, we show that if we restrict ourselves to single-headed rule sets over signatures of arity ≤ 2, then fcs subsumes fus.

Subject Classification

ACM Subject Classification
  • Theory of computation → Description logics
  • Theory of computation → Database query languages (principles)
  • Theory of computation → Logic and databases
  • Mathematics of computing → Graph theory
Keywords
  • existential rules
  • TGDs
  • cliquewidth
  • treewidth
  • bounded-treewidth sets
  • finite-unification sets
  • first-order rewritability
  • monadic second-order logic
  • datalog

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases. Addison-Wesley, 1995. URL: http://webdam.inria.fr/Alice/.
  2. Jean-François Baget, Meghyn Bienvenu, Marie-Laure Mugnier, and Swan Rocher. Combining existential rules and transitivity: Next steps. In Qiang Yang and Michael J. Wooldridge, editors, Proceedings of the 24th International Joint Conference on Artificial Intelligence (IJCAI'15), pages 2720-2726. AAAI Press, 2015. URL: http://ijcai.org/Abstract/15/385.
  3. Jean-François Baget, Michel Leclère, Marie-Laure Mugnier, and Eric Salvat. On rules with existential variables: Walking the decidability line. Artificial Intelligence, 175(9):1620-1654, 2011. URL: https://doi.org/10.1016/j.artint.2011.03.002.
  4. Catriel Beeri and Moshe Y. Vardi. A proof procedure for data dependencies. Journal of the ACM, 31(4):718-741, 1984. URL: https://doi.org/10.1145/1634.1636.
  5. Pierre Bourhis, Markus Krötzsch, and Sebastian Rudolph. How to best nest regular path queries. In Meghyn Bienvenu, Magdalena Ortiz, Riccardo Rosati, and Mantas Simkus, editors, Informal Proceedings of the 27th International Workshop on Description Logics, Vienna, Austria, July 17-20, 2014, volume 1193 of CEUR Workshop Proceedings, pages 404-415. CEUR-WS.org, 2014. URL: http://ceur-ws.org/Vol-1193/paper_80.pdf.
  6. Pierre Bourhis, Michael Morak, and Andreas Pieris. Making cross products and guarded ontology languages compatible. In Carles Sierra, editor, Proceedings of the 26th International Joint Conference on Artificial Intelligence (IJCAI'17), pages 880-886. ijcai.org, 2017. URL: https://doi.org/10.24963/ijcai.2017/122.
  7. Andrea Calì, Georg Gottlob, and Michael Kifer. Taming the infinite chase: Query answering under expressive relational constraints. Journal of Artificial Intelligence Research, 48:115-174, 2013. URL: https://doi.org/10.1613/jair.3873.
  8. Andrea Calì, Georg Gottlob, and Andreas Pieris. Towards more expressive ontology languages: The query answering problem. Artificial Intelligence, 193:87-128, 2012. URL: https://doi.org/10.1016/j.artint.2012.08.002.
  9. Ashok K. Chandra, Harry R. Lewis, and Johann A. Makowsky. Embedded implicational dependencies and their inference problem. In Proceedings of the 13th Annual ACM Symposium on Theory of Computing (STOC'81), pages 342-354. ACM, 1981. URL: https://doi.org/10.1145/800076.802488.
  10. Stavros S. Cosmadakis, Haim Gaifman, Paris C. Kanellakis, and Moshe Y. Vardi. Decidable optimization problems for database logic programs (preliminary report). In Janos Simon, editor, Proceedings of the 20th Annual ACM Symposium on Theory of Computing (STOC'88), pages 477-490. ACM, 1988. URL: https://doi.org/10.1145/62212.62259.
  11. Bruno Courcelle. The monadic second-order logic of graphs. I. Recognizable sets of finite graphs. Information and Computation, 85(1):12-75, 1990. URL: https://doi.org/10.1016/0890-5401(90)90043-H.
  12. Bruno Courcelle. Clique-width of countable graphs: A compactness property. Discrete Mathematics, 276(1-3):127-148, 2004. URL: https://doi.org/10.1016/S0012-365X(03)00303-0.
  13. Bruno Courcelle and Joost Engelfriet. Graph Structure and Monadic Second-Order Logic - A Language-Theoretic Approach, volume 138 of Encyclopedia of mathematics and its applications. Cambridge University Press, 2012. URL: http://www.cambridge.org/fr/knowledge/isbn/item5758776/?site_locale=fr_FR.
  14. Alin Deutsch, Alan Nash, and Jeffrey B. Remmel. The chase revisited. In Maurizio Lenzerini and Domenico Lembo, editors, Proceedings of the 27th ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems (PODS'08), pages 149-158. ACM, 2008. URL: https://doi.org/10.1145/1376916.1376938.
  15. Thomas Feller, Tim S. Lyon, Piotr Ostropolski-Nalewaja, and Sebastian Rudolph. Finite-cliquewidth sets of existential rules: Toward a general criterion for decidable yet highly expressive querying. CoRR, abs/2209.02464, 2022. URL: https://doi.org/10.48550/arXiv.2209.02464.
  16. Daniela Florescu, Alon Y. Levy, and Dan Suciu. Query containment for conjunctive queries with regular expressions. In Alberto O. Mendelzon and Jan Paredaens, editors, Proceedings of the 17th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems (PODS'98), pages 139-148. ACM, 1998. URL: https://doi.org/10.1145/275487.275503.
  17. Harald Ganzinger, Christoph Meyer, and Margus Veanes. The two-variable guarded fragment with transitive relations. In Proceedings of the 14th Annual IEEE Symposium on Logic in Computer Science (LICS'99), pages 24-34. IEEE Computer Society, 1999. URL: https://doi.org/10.1109/LICS.1999.782582.
  18. Birte Glimm, Carsten Lutz, Ian Horrocks, and Ulrike Sattler. Conjunctive query answering for the description logic SHIQ. Journal of Artificial Intelligence Research, 31:157-204, 2008. URL: https://doi.org/10.1613/jair.2372.
  19. Kurt Gödel. Über die Vollständigkeit des Logikkalküls. PhD thesis, Universität Wien, 1929. Google Scholar
  20. Georg Gottlob. Datalog+/-: A unified approach to ontologies and integrity constraints. In Valeria De Antonellis, Silvana Castano, Barbara Catania, and Giovanna Guerrini, editors, Proceedings of the 17th Italian Symposium on Advanced Database Systems, (SEBD'09), pages 5-6. Edizioni Seneca, 2009. Google Scholar
  21. Martin Grohe and György Turán. Learnability and definability in trees and similar structures. Theory of Computing Systems, 37(1):193-220, 2004. URL: https://doi.org/10.1007/s00224-003-1112-8.
  22. Emanuel Kieronski and Sebastian Rudolph. Finite model theory of the triguarded fragment and related logics. In Proceedings of the 36th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS'21), pages 1-13. IEEE, 2021. URL: https://doi.org/10.1109/LICS52264.2021.9470734.
  23. Markus Krötzsch and Sebastian Rudolph. Extending decidable existential rules by joining acyclicity and guardedness. In Toby Walsh, editor, Proceedings of the 22nd International Joint Conference on Artificial Intelligence (IJCAI'11), pages 963-968. IJCAI/AAAI, 2011. URL: https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-166.
  24. Magdalena Ortiz, Sebastian Rudolph, and Mantas Simkus. Query answering in the horn fragments of the description logics SHOIQ and SROIQ. In Toby Walsh, editor, Proceedings of the 22nd International Joint Conference on Artificial Intelligence (IJCAI'11), pages 1039-1044. IJCAI/AAAI, 2011. URL: https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-178.
  25. Piotr Ostropolski-Nalewaja, Jerzy Marcinkowski, David Carral, and Sebastian Rudolph. A journey to the frontiers of query rewritability. CoRR, abs/2012.11269, 2020. URL: http://arxiv.org/abs/2012.11269.
  26. Michael O. Rabin. Decidability of second-order theories and automata on infinite trees. Transactions of the American Mathematical Society, 141:1-35, 1969. URL: http://www.jstor.org/stable/1995086.
  27. Juan L. Reutter, Miguel Romero, and Moshe Y. Vardi. Regular queries on graph databases. Theory of Computing Systems, 61(1):31-83, 2017. URL: https://doi.org/10.1007/s00224-016-9676-2.
  28. Riccardo Rosati. On the decidability and finite controllability of query processing in databases with incomplete information. In Stijn Vansummeren, editor, Proceedings of the 25th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems (PODS'06), pages 356-365. ACM, 2006. URL: https://doi.org/10.1145/1142351.1142404.
  29. Sebastian Rudolph and Markus Krötzsch. Flag & check: Data access with monadically defined queries. In Richard Hull and Wenfei Fan, editors, Proceedings of the 32nd ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems (PODS'13), pages 151-162. ACM, 2013. URL: https://doi.org/10.1145/2463664.2465227.
  30. Sebastian Rudolph, Markus Krötzsch, and Pascal Hitzler. All elephants are bigger than all mice. In Franz Baader, Carsten Lutz, and Boris Motik, editors, Proceedings of the 21st International Workshop on Description Logics (DL2008), volume 353 of CEUR Workshop Proceedings. CEUR-WS.org, 2008. URL: http://ceur-ws.org/Vol-353/RudolphKraetzschHitzler.pdf.
  31. Eric Salvat and Marie-Laure Mugnier. Sound and complete forward and backward chainings of graph rules. In Peter W. Eklund, Gerard Ellis, and Graham Mann, editors, Proceedings of the 4th International Conference on Conceptual Structures (ICCS'96), volume 1115 of LNCS, pages 248-262. Springer, 1996. URL: https://doi.org/10.1007/3-540-61534-2_16.
  32. Wieslaw Szwast and Lidia Tendera. The guarded fragment with transitive guards. Annals of Pure and Applied Logic, 128(1-3):227-276, 2004. URL: https://doi.org/10.1016/j.apal.2004.01.003.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail