Symmetric Linear Arc Monadic Datalog and Gadget Reductions

Authors Manuel Bodirsky , Florian Starke



PDF
Thumbnail PDF

File

LIPIcs.ICDT.2025.13.pdf
  • Filesize: 0.8 MB
  • 20 pages

Document Identifiers

Author Details

Manuel Bodirsky
  • Institut für Algebra, TU Dresden, Germany
Florian Starke
  • Institut für Algebra, TU Dresden, Germany

Cite As Get BibTex

Manuel Bodirsky and Florian Starke. Symmetric Linear Arc Monadic Datalog and Gadget Reductions. In 28th International Conference on Database Theory (ICDT 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 328, pp. 13:1-13:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025) https://doi.org/10.4230/LIPIcs.ICDT.2025.13

Abstract

A Datalog program solves a constraint satisfaction problem (CSP) if and only if it derives the goal predicate precisely on the unsatisfiable instances of the CSP. There are three Datalog fragments that are particularly important for finite-domain constraint satisfaction: arc monadic Datalog, linear Datalog, and symmetric linear Datalog, each having good computational properties. We consider the fragment of Datalog where we impose all of these restrictions simultaneously, i.e., we study symmetric linear arc monadic (slam) Datalog. We characterise the CSPs that can be solved by a slam Datalog program as those that have a gadget reduction to a particular Boolean constraint satisfaction problem. We also present exact characterisations in terms of a homomorphism duality (which we call unfolded caterpillar duality), and in universal-algebraic terms (using known minor conditions, namely the existence of quasi Maltsev operations and k-absorptive operations of arity nk, for all n,k ≥ 1). Our characterisations also imply that the question whether a given finite-domain CSP can be expressed by a slam Datalog program is decidable.

Subject Classification

ACM Subject Classification
  • Theory of computation → Finite Model Theory
Keywords
  • Datalog
  • Gadget Reductions
  • Homomorphism Dualities
  • Minor Conditions

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Foto N. Afrati and Stavros S. Cosmadakis. Expressiveness of restricted recursive queries (extended abstract). In David S. Johnson, editor, Proceedings of the 21st Annual ACM Symposium on Theory of Computing, May 14-17, 1989, Seattle, Washigton, USA, pages 113-126. ACM, 1989. URL: https://doi.org/10.1145/73007.73018.
  2. Albert Atserias, Andrei A. Bulatov, and Anuj Dawar. Affine systems of equations and counting infinitary logic. Theoretical Computer Science, 410(18):1666-1683, 2009. URL: https://doi.org/10.1016/J.TCS.2008.12.049.
  3. L. Barto, M. Kozik, and R. Willard. Near unanimity constraints have bounded pathwidth duality. In Proceedings of the 27th ACM/IEEE Symposium on Logic in Computer Science (LICS), pages 125-134, 2012. Google Scholar
  4. Libor Barto and Marcin Kozik. Constraint satisfaction problems of bounded width. In Proceedings of the Annual Symposium on Foundations of Computer Science (FOCS), pages 595-603, 2009. URL: https://doi.org/10.1109/FOCS.2009.32.
  5. Libor Barto, Jakub Opršal, and Michael Pinsker. The wonderland of reflections. Israel Journal of Mathematics, 223(1):363-398, 2018. Google Scholar
  6. Manuel Bodirsky. Graph homomorphisms and universal algebra. Lecture Notes, https://wwwpub.zih.tu-dresden.de/~bodirsky/GH-UA.pdf, 2023.
  7. Manuel Bodirsky, Jakub Bulín, Florian Starke, and Michael Wernthaler. The smallest hard trees. Constraints, abs/2205.07528, 2022. URL: https://doi.org/10.48550/arXiv.2205.07528.
  8. Manuel Bodirsky and Víctor Dalmau. Datalog and constraint satisfaction with infinite templates. Journal on Computer and System Sciences, 79:79-100, 2013. A preliminary version appeared in the proceedings of the Symposium on Theoretical Aspects of Computer Science (STACS'05). URL: https://doi.org/10.1016/J.JCSS.2012.05.012.
  9. Manuel Bodirsky and Florian Starke. Maximal digraphs with respect to primitive positive constructability. Combinatorica, 42:997-1010, 2022. URL: https://doi.org/10.1007/S00493-022-4918-1.
  10. Manuel Bodirsky and Florian Starke. Symmetric linear arc monadic datalog and gadget reductions. https://arxiv.org/abs/2407.04924, 2025. Google Scholar
  11. Manuel Bodirsky, Florian Starke, and Albert Vucaj. Smooth digraphs modulo primitive positive constructability and cyclic loop conditions. International Journal on Algebra and Computation, 31(5):939-967, 2021. Preprint available at ArXiv:1906.05699. Google Scholar
  12. Andrei A. Bulatov. A dichotomy theorem for nonuniform CSPs. In 58th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2017, Berkeley, CA, USA, October 15-17, pages 319-330, 2017. URL: https://doi.org/10.1109/FOCS.2017.37.
  13. Andrei A. Bulatov, Andrei Krokhin, and Benoit Larose. Dualities for Constraint Satisfaction Problems, pages 93-124. Springer Berlin Heidelberg, Berlin, Heidelberg, 2008. URL: https://doi.org/10.1007/978-3-540-92800-3_5.
  14. Jakub Bulín, Andrei A. Krokhin, and Jakub Opršal. Algebraic approach to promise constraint satisfaction. In Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing, STOC 2019, Phoenix, AZ, USA, June 23-26, 2019, pages 602-613, 2019. URL: https://doi.org/10.1145/3313276.3316300.
  15. Catarina Carvalho, Víctor Dalmau, and Andrei Krokhin. CSP duality and trees of bounded pathwidth. Theoretical Computer Science, 411:3188-3208, 2010. URL: https://doi.org/10.1016/J.TCS.2010.05.016.
  16. Catarina Carvalho, Víctor Dalmau, and Andrei A. Krokhin. Two new homomorphism dualities and lattice operations. J. Log. Comput., 21(6):1065-1092, 2011. URL: https://doi.org/10.1093/LOGCOM/EXQ030.
  17. Ashok K. Chandra and Philip M. Merlin. Optimal implementation of conjunctive queries in relational data bases. In Proceedings of the Symposium on Theory of Computing (STOC), pages 77-90, 1977. URL: https://doi.org/10.1145/800105.803397.
  18. Hubie Chen and Benoît Larose. Asking the metaquestions in constraint tractability. TOCT, 9(3):11:1-11:27, 2017. URL: https://doi.org/10.1145/3134757.
  19. Víctor Dalmau. Linear Datalog and bounded path duality of relational structures. Logical Methods in Computer Science, 1(1), 2005. URL: https://doi.org/10.2168/LMCS-1(1:5)2005.
  20. Víctor Dalmau and Benoît Larose. Maltsev + Datalog rightarrow symmetric Datalog. In Proceedings of the Twenty-Third Annual IEEE Symposium on Logic in Computer Science, LICS 2008, 24-27 June 2008, Pittsburgh, PA, USA, pages 297-306. IEEE Computer Society, 2008. Google Scholar
  21. Victor Dalmau and Jakub Opršal. Local consistency as a reduction between constraint satisfaction problems, 2023. URL: https://arxiv.org/abs/2301.05084.
  22. Víctor Dalmau and Justin Pearson. Closure functions and width 1 problems. In Proceedings of the International Conference on Principles and Practice of Constraint Programming (CP), pages 159-173, 1999. URL: https://doi.org/10.1007/978-3-540-48085-3_12.
  23. László Egri, Benoit Larose, and Pascal Tesson. Symmetric Datalog and constraint satisfaction problems in logspace. In Proceedings of the Symposium on Logic in Computer Science (LICS), pages 193-202, 2007. Google Scholar
  24. László Egri, Benoît Larose, and Pascal Tesson. Directed st-connectivity is not expressible in symmetric Datalog. In Automata, Languages and Programming, 35th International Colloquium, ICALP 2008, Reykjavik, Iceland, July 7-11, 2008, Proceedings, Part II - Track B: Logic, Semantics, and Theory of Programming & Track C: Security and Cryptography Foundations, pages 172-183, 2008. URL: https://doi.org/10.1007/978-3-540-70583-3_15.
  25. Tomás Feder and Moshe Y. Vardi. The computational structure of monotone monadic SNP and constraint satisfaction: a study through Datalog and group theory. SIAM Journal on Computing, 28:57-104, 1999. URL: https://doi.org/10.1137/S0097539794266766.
  26. P. Hell, J. Nešetřil, and X. Zhu. Duality and polynomial testing of tree homomorphisms. TAMS, 348(4):1281-1297, 1996. Google Scholar
  27. Pavol Hell and Jaroslav Nešetřil. Graphs and Homomorphisms. Oxford University Press, Oxford, 2004. Google Scholar
  28. Wilfrid Hodges. A shorter model theory. Cambridge University Press, Cambridge, 1997. Google Scholar
  29. P. C. Kanellakis. Logic programming and parallel complexity, pages 547-585. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1988. Book chapter in `Foundations of Deductive Databases and Logic Programming'. Google Scholar
  30. Alexandr Kazda. n-permutability and linear Datalog implies symmetric Datalog. Logical Methods in Computer Science, Volume 14, Issue 2, April 2018. URL: https://doi.org/10.23638/LMCS-14(2:3)2018.
  31. Marcin Kozik, Andrei Krokhin, Matt Valeriote, and Ross Willard. Characterizations of several Maltsev conditions. Algebra universalis, 73(3):205-224, 2015. URL: https://doi.org/10.1007/s00012-015-0327-2.
  32. Benoit Larose and Pascal Tesson. Universal algebra and hardness results for constraint satisfaction problems. Theoretical Computer Science, 410(18):1629-1647, 2009. URL: https://doi.org/10.1016/J.TCS.2008.12.048.
  33. Benoit Larose and László Zádori. Bounded width problems and algebras. Algebra Universalis, 56(3-4):439-466, 2007. Google Scholar
  34. Sebastian Meyer and Florian Starke. Finite simple groups in the primitive positive constructability poset, 2024. URL: https://arxiv.org/abs/2409.06487.
  35. Reinhard Pöschel and Lev A. Kalužnin. Funktionen- und Relationenalgebren. Deutscher Verlag der Wissenschaften, Berlin, 1979. Google Scholar
  36. Benjamin Rossman. Homomorphism preservation theorems. Journal of the ACM, 55(3), 2008. URL: https://doi.org/10.1145/1379759.1379763.
  37. Thomas J. Schaefer. The complexity of satisfiability problems. In Proceedings of the Symposium on Theory of Computing (STOC), pages 216-226, 1978. URL: https://doi.org/10.1145/800133.804350.
  38. Florian Starke. Digraphs modulo primitive positive constructability. Preprint, 2024. PhD dissertation, Institute of Algebra, TU Dresden. Google Scholar
  39. Albert Vucaj and Dmitriy Zhuk. Submaximal clones over a three-element set up to minor-equivalence, 2024. URL: https://arxiv.org/abs/2304.12807.
  40. Dmitriy Zhuk. A proof of the CSP dichotomy conjecture. J. ACM, 67(5):30:1-30:78, 2020. URL: https://doi.org/10.1145/3402029.
  41. Dmitriy N. Zhuk. A proof of CSP dichotomy conjecture. In 58th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2017, Berkeley, CA, USA, October 15-17, pages 331-342, 2017. URL: https://arxiv.org/abs/1704.01914.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail