Quantum Data Sketches

Authors Qin Zhang , Mohsen Heidari



PDF
Thumbnail PDF

File

LIPIcs.ICDT.2025.16.pdf
  • Filesize: 0.77 MB
  • 19 pages

Document Identifiers

Author Details

Qin Zhang
  • Indiana University Bloomington, IN, USA
Mohsen Heidari
  • Indiana University Bloomington, IN, USA

Cite As Get BibTex

Qin Zhang and Mohsen Heidari. Quantum Data Sketches. In 28th International Conference on Database Theory (ICDT 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 328, pp. 16:1-16:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025) https://doi.org/10.4230/LIPIcs.ICDT.2025.16

Abstract

Recent advancements in quantum technologies, particularly in quantum sensing and simulation, have facilitated the generation and analysis of inherently quantum data. This progress underscores the necessity for developing efficient and scalable quantum data management strategies. This goal faces immense challenges due to the exponential dimensionality of quantum data and its unique quantum properties such as no-cloning and measurement stochasticity. Specifically, classical storage and manipulation of an arbitrary n-qubit quantum state requires exponential space and time. Hence, there is a critical need to revisit foundational data management concepts and algorithms for quantum data. In this paper, we propose succinct quantum data sketches to support basic database operations such as search and selection. We view our work as an initial step towards the development of quantum data management model, opening up many possibilities for future research in this direction.

Subject Classification

ACM Subject Classification
  • Theory of computation → Quantum query complexity
  • Information systems → Query operators
  • Information systems → Query optimization
Keywords
  • quantum data representation
  • data sketching
  • query execution

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Scott Aaronson. The learnability of quantum states. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 463(2088):3089-3114, 2007. Google Scholar
  2. Scott Aaronson. Shadow tomography of quantum states. In Ilias Diakonikolas, David Kempe, and Monika Henzinger, editors, STOC, pages 325-338. ACM, 2018. URL: https://doi.org/10.1145/3188745.3188802.
  3. Scott Aaronson and Daniel Gottesman. Improved simulation of stabilizer circuits. Physical Review A, 70(5):052328, November 2004. URL: https://doi.org/10.1103/physreva.70.052328.
  4. Alexandr Andoni, Moses Charikar, Ofer Neiman, and Huy L. Nguyen. Near linear lower bound for dimension reduction in L1. In Rafail Ostrovsky, editor, FOCS, pages 315-323. IEEE Computer Society, 2011. URL: https://doi.org/10.1109/FOCS.2011.87.
  5. Alexandr Andoni and Piotr Indyk. Near-optimal hashing algorithms for approximate nearest neighbor in high dimensions. In FOCS, pages 459-468. IEEE Computer Society, 2006. URL: https://doi.org/10.1109/FOCS.2006.49.
  6. Costin Badescu and Ryan O'Donnell. Improved quantum data analysis. In Samir Khuller and Virginia Vassilevska Williams, editors, STOC, pages 1398-1411. ACM, 2021. URL: https://doi.org/10.1145/3406325.3451109.
  7. Costin Badescu, Ryan O'Donnell, and John Wright. Quantum state certification. CoRR, abs/1708.06002, 2017. URL: https://arxiv.org/abs/1708.06002.
  8. Harry Buhrman, Richard Cleve, John Watrous, and Ronald De Wolf. Quantum fingerprinting. Physical Review Letters, 87(16):167902, 2001. Google Scholar
  9. Umut Çalikyilmaz, Sven Groppe, Jinghua Groppe, Tobias Winker, Stefan Prestel, Farida Shagieva, Daanish Arya, Florian Preis, and Le Gruenwald. Opportunities for quantum acceleration of databases: Optimization of queries and transaction schedules. Proc. VLDB Endow., 16(9):2344-2353, 2023. URL: https://doi.org/10.14778/3598581.3598603.
  10. Clément L. Canonne. A short note on learning discrete distributions, 2020. URL: https://arxiv.org/abs/2002.11457.
  11. Thomas Chen, Shivam Nadimpalli, and Henry Yuen. Testing and learning quantum juntas nearly optimally. In Nikhil Bansal and Viswanath Nagarajan, editors, SODA, pages 1163-1185, 2023. Google Scholar
  12. Kai-Min Chung and Han-Hsuan Lin. Sample efficient algorithms for learning quantum channels in PAC model and the approximate state discrimination problem. In Min-Hsiu Hsieh, editor, TQC, volume 197 of LIPIcs, pages 3:1-3:22. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. URL: https://doi.org/10.4230/LIPICS.TQC.2021.3.
  13. Paul Cockshott. Quantum relational databases, 1997. URL: https://arxiv.org/abs/quant-ph/9712025.
  14. Mayur Datar, Nicole Immorlica, Piotr Indyk, and Vahab S. Mirrokni. Locality-sensitive hashing scheme based on p-stable distributions. In Jack Snoeyink and Jean-Daniel Boissonnat, editors, SOCG, pages 253-262. ACM, 2004. URL: https://doi.org/10.1145/997817.997857.
  15. Edward Farhi, Jeffrey Goldstone, and Sam Gutmann. A quantum approximate optimization algorithm, 2014. URL: https://doi.org/10.48550/arXiv.1411.4028.
  16. Edward Farhi and Hartmut Neven. Classification with quantum neural networks on near term processors, February 2018. URL: https://arxiv.org/abs/1802.06002.
  17. Daniel Stilck França, Fernando G. S. L. Brandão, and Richard Kueng. Fast and robust quantum state tomography from few basis measurements. In Min-Hsiu Hsieh, editor, 16th Conference on the Theory of Quantum Computation, Communication and Cryptography, TQC 2021, July 5-8, 2021, Virtual Conference, volume 197 of LIPIcs, pages 7:1-7:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. URL: https://doi.org/10.4230/LIPICS.TQC.2021.7.
  18. Siddhant Garg and Goutham Ramakrishnan. Advances in quantum deep learning: An overview. arXiv:2005.04316, May 2020. URL: https://arxiv.org/abs/2005.04316.
  19. Weiyuan Gong and Scott Aaronson. Learning distributions over quantum measurement outcomes. CoRR, abs/2209.03007, 2022. URL: https://doi.org/10.48550/arXiv.2209.03007.
  20. Lov K. Grover. A fast quantum mechanical algorithm for database search. In Gary L. Miller, editor, STOC, pages 212-219. ACM, 1996. URL: https://doi.org/10.1145/237814.237866.
  21. Jeongwan Haah, Aram W. Harrow, Zheng-Feng Ji, Xiaodi Wu, and Nengkun Yu. Sample-optimal tomography of quantum states. In Daniel Wichs and Yishay Mansour, editors, STOC, pages 913-925. ACM, 2016. URL: https://doi.org/10.1145/2897518.2897585.
  22. Jeongwan Haah, Aram W. Harrow, Zhengfeng Ji, Xiaodi Wu, and Nengkun Yu. Sample-optimal tomography of quantum states. IEEE Transactions on Information Theory, pages 1-1, 2017. URL: https://doi.org/10.1109/tit.2017.2719044.
  23. Rihan Hai, Shih-Han Hung, and Sebastian Feld. Quantum data management: From theory to opportunities. In ICDE, pages 5376-5381. IEEE, 2024. URL: https://doi.org/10.1109/ICDE60146.2024.00410.
  24. Aram W Harrow, Avinatan Hassidim, and Seth Lloyd. Quantum algorithm for linear systems of equations. Physical review letters, 103(15):150502, 2009. Google Scholar
  25. Aram W. Harrow, Cedric Yen-Yu Lin, and Ashley Montanaro. Sequential measurements, disturbance and property testing. In Philip N. Klein, editor, SODA, pages 1598-1611. SIAM, 2017. URL: https://doi.org/10.1137/1.9781611974782.105.
  26. Aram W. Harrow and John C. Napp. Low-depth gradient measurements can improve convergence in variational hybrid quantum-classical algorithms. Physical Review Letters, 126(14):140502, April 2021. URL: https://doi.org/10.1103/physrevlett.126.140502.
  27. Aram W. Harrow and Andreas J. Winter. How many copies are needed for state discrimination? IEEE Trans. Inf. Theory, 58(1):1-2, 2012. URL: https://doi.org/10.1109/TIT.2011.2169544.
  28. Mohsen Heidari, Ananth Y. Grama, and Wojciech Szpankowski. Toward physically realizable quantum neural networks. Association for the Advancement of Articial Intelligence (AAAI), 2022. Google Scholar
  29. Mohsen Heidari, Arun Padakandla, and Wojciech Szpankowski. A theoretical framework for learning from quantum data. In IEEE International Symposium on Information Theory (ISIT), 2021. Google Scholar
  30. Alexander S. Holevo. A Mathematical Introduction. De Gruyter, Berlin, Boston, 2013. URL: https://doi.org/doi:10.1515/9783110273403.
  31. Alexander Semenovich Holevo. On asymptotically optimal hypotheses testing in quantum statistics. Teoriya Veroyatnostei i ee Primeneniya, 23(2):429-432, 1978. Google Scholar
  32. Hsin-Yuan Huang, Richard Kueng, and John Preskill. Predicting many properties of a quantum system from very few measurements. Nature Physics 16, 1050-1057 (2020), February 2020. Google Scholar
  33. Noah Huffman, Dmitri Pavlichin, and Tsachy Weissman. Lossy compression for schrödinger-style quantum simulations, 2024. URL: https://arxiv.org/abs/2401.11088.
  34. Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: Towards removing the curse of dimensionality. In Jeffrey Scott Vitter, editor, STOC, pages 604-613. ACM, 1998. URL: https://doi.org/10.1145/276698.276876.
  35. E. Joos, H. D. Zeh, C. Kiefer, D. J. W. Giulini, J. Kupsch, and I. O. Stamatescu. Decoherence and the Appearance of a Classical World in Quantum Theory. Springer, 2003. Google Scholar
  36. Stephen P. Jordan, Keith S. M. Lee, and John Preskill. Quantum algorithms for quantum field theories. Science, 336(6085):1130-1133, June 2012. URL: https://doi.org/10.1126/science.1217069.
  37. Julia Kempe, Alexei Y. Kitaev, and Oded Regev. The complexity of the local hamiltonian problem. SIAM J. Comput., 35(5):1070-1097, 2006. URL: https://doi.org/10.1137/S0097539704445226.
  38. Ian D. Kivlichan, Craig Gidney, Dominic W. Berry, Nathan Wiebe, Jarrod McClean, Wei Sun, Zhang Jiang, Nicholas Rubin, Austin Fowler, Alán Aspuru-Guzik, Hartmut Neven, and Ryan Babbush. Improved fault-tolerant quantum simulation of condensed-phase correlated electrons via trotterization. Quantum, 4:296, July 2020. URL: https://doi.org/10.22331/q-2020-07-16-296.
  39. Yang Liu and Gui Lu Long. Deleting a marked item from an unsorted database with a single query, 2007. URL: https://arxiv.org/abs/0710.3301.
  40. Fabio Valerio Massoli, Lucia Vadicamo, Giuseppe Amato, and Fabrizio Falchi. A leap among entanglement and neural networks: A quantum survey. arXiv:2107.03313, July 2021. URL: https://arxiv.org/abs/2107.03313.
  41. Isaac L. Chuang Michael A. Nielsen. Quantum Computation and Quantum Information. Cambridge University Pr., December 2010. Google Scholar
  42. K. Mitarai, M. Negoro, M. Kitagawa, and K. Fujii. Quantum circuit learning. Physical Review A, 98(3):032309, September 2018. URL: https://doi.org/10.1103/physreva.98.032309.
  43. Ryan O'Donnell and John Wright. Efficient quantum tomography. In Daniel Wichs and Yishay Mansour, editors, STOC, pages 899-912. ACM, 2016. URL: https://doi.org/10.1145/2897518.2897544.
  44. Alexey Pyrkov, Alex Aliper, Dmitry Bezrukov, Yen-Chu Lin, Daniil Polykovskiy, Petrina Kamya, Feng Ren, and Alex Zhavoronkov. Quantum computing for near-term applications in generative chemistry and drug discovery. Drug Discovery Today, page 103675, 2023. Google Scholar
  45. Jun John Sakurai and Eugene D Commins. Modern quantum mechanics, revised edition, 1995. Google Scholar
  46. Maria Schuld, Ilya Sinayskiy, and Francesco Petruccione. The quest for a quantum neural network. Quantum Information Processing, 13(11):2567-2586, August 2014. URL: https://doi.org/10.1007/s11128-014-0809-8.
  47. Pranab Sen. Random measurement bases, quantum state distinction and applications to the hidden subgroup problem. In CCC, pages 274-287. IEEE Computer Society, 2006. URL: https://doi.org/10.1109/CCC.2006.37.
  48. Peter W. Shor. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput., 26(5):1484-1509, 1997. URL: https://doi.org/10.1137/S0097539795293172.
  49. Adam Smith, MS Kim, Frank Pollmann, and Johannes Knolle. Simulating quantum many-body dynamics on a current digital quantum computer. npj Quantum Information, 5(1):106, 2019. Google Scholar
  50. Xiaoming Sun, Guojing Tian, Shuai Yang, Pei Yuan, and Shengyu Zhang. Asymptotically optimal circuit depth for quantum state preparation and general unitary synthesis, 2023. URL: https://arxiv.org/abs/2108.06150.
  51. Immanuel Trummer and Christoph Koch. Multiple query optimization on the d-wave 2x adiabatic quantum computer. Proc. VLDB Endow., 9(9):648-659, 2016. URL: https://doi.org/10.14778/2947618.2947621.
  52. James D. Whitfield, Jacob Biamonte, and Alán Aspuru-Guzik. Simulation of electronic structure hamiltonians using quantum computers. Molecular Physics, 109(5):735-750, March 2011. URL: https://doi.org/10.1080/00268976.2011.552441.
  53. Tobias Winker, Sven Groppe, Valter Uotila, Zhengtong Yan, Jiaheng Lu, Maja Franz, and Wolfgang Mauerer. Quantum machine learning: Foundation, new techniques, and opportunities for database research. In Sudipto Das, Ippokratis Pandis, K. Selçuk Candan, and Sihem Amer-Yahia, editors, SIGMOD, pages 45-52. ACM, 2023. URL: https://doi.org/10.1145/3555041.3589404.
  54. Xin-Chuan Wu, Sheng Di, Emma Maitreyee Dasgupta, Franck Cappello, Hal Finkel, Yuri Alexeev, and Frederic T. Chong. Full-state quantum circuit simulation by using data compression. In Michela Taufer, Pavan Balaji, and Antonio J. Peña, editors, SC, pages 80:1-80:24. ACM, 2019. URL: https://doi.org/10.1145/3295500.3356155.
  55. Ahmed Younes. Database manipulation on quantum computers, 2007. URL: https://arxiv.org/abs/0705.4303.
  56. Qin Zhang and Mohsen Heidari. Quantum data sketches, 2025. URL: https://arxiv.org/abs/2501.06705.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail