On Deciding the Data Complexity of Answering Linear Monadic Datalog Queries with LTL Operators

Authors Alessandro Artale , Anton Gnatenko , Vladislav Ryzhikov , Michael Zakharyaschev



PDF
Thumbnail PDF

File

LIPIcs.ICDT.2025.31.pdf
  • Filesize: 1.07 MB
  • 19 pages

Document Identifiers

Author Details

Alessandro Artale
  • Faculty of Engineering, Free University of Bozen-Bolzano, Italy
Anton Gnatenko
  • Faculty of Engineering, Free University of Bozen-Bolzano, Italy
Vladislav Ryzhikov
  • Birkbeck, University of London, UK
Michael Zakharyaschev
  • Birkbeck, University of London, UK

Cite As Get BibTex

Alessandro Artale, Anton Gnatenko, Vladislav Ryzhikov, and Michael Zakharyaschev. On Deciding the Data Complexity of Answering Linear Monadic Datalog Queries with LTL Operators. In 28th International Conference on Database Theory (ICDT 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 328, pp. 31:1-31:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025) https://doi.org/10.4230/LIPIcs.ICDT.2025.31

Abstract

Our concern is the data complexity of answering linear monadic datalog queries whose atoms in the rule bodies can be prefixed by operators of linear temporal logic LTL. We first observe that, for data complexity, answering any connected query with operators ○/○- (at the next/previous moment) is either in AC⁰, or in ACC⁰\AC⁰, or NC¹-complete, or L-hard and in NL. Then we show that the problem of deciding L-hardness of answering such queries is PSpace-complete, while checking membership in the classes AC⁰ and ACC⁰ as well as NC¹-completeness can be done in ExpSpace. Finally, we prove that membership in AC⁰ or in ACC⁰, NC¹-completeness, and L-hardness are undecidable for queries with operators ◇/◇- (sometime in the future/past) provided that NC¹ ≠ NL and L ≠ NL.

Subject Classification

ACM Subject Classification
  • Theory of computation → Database query processing and optimization (theory)
Keywords
  • Linear monadic datalog
  • linear temporal logic
  • data complexity

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Rajeev Alur and Thomas A. Henzinger. Real-time logics: Complexity and expressiveness. Inf. Comput., 104(1):35-77, 1993. URL: https://doi.org/10.1006/inco.1993.1025.
  2. Peter Alvaro, William R. Marczak, Neil Conway, Joseph M. Hellerstein, David Maier, and Russell Sears. Dedalus: Datalog in time and space. In Oege de Moor, Georg Gottlob, Tim Furche, and Andrew Jon Sellers, editors, Datalog Reloaded - First International Workshop, Datalog 2010, Oxford, UK, March 16-19, 2010. Revised Selected Papers, volume 6702 of Lecture Notes in Computer Science, pages 262-281. Springer, 2010. URL: https://doi.org/10.1007/978-3-642-24206-9_16.
  3. Alessandro Artale, Diego Calvanese, Roman Kontchakov, and Michael Zakharyaschev. The dl-lite family and relations. J. Artif. Intell. Res., 36:1-69, 2009. URL: https://doi.org/10.1613/jair.2820.
  4. Alessandro Artale, Anton Gnatenko, Vladislav Ryzhikov, and Michael Zakharyaschev. On deciding the data complexity of answering linear monadic datalog queries with LTL operators (extended version), 2025. URL: https://arxiv.org/abs/2501.13762.
  5. Alessandro Artale, Roman Kontchakov, Alisa Kovtunova, Vladislav Ryzhikov, Frank Wolter, and Michael Zakharyaschev. First-order rewritability of ontology-mediated queries in linear temporal logic. Artif. Intell., 299:103536, 2021. URL: https://doi.org/10.1016/j.artint.2021.103536.
  6. Alessandro Artale, Roman Kontchakov, Vladislav Ryzhikov, and Michael Zakharyaschev. The complexity of clausal fragments of LTL. In Kenneth L. McMillan, Aart Middeldorp, and Andrei Voronkov, editors, Logic for Programming, Artificial Intelligence, and Reasoning - 19th International Conference, LPAR-19, Stellenbosch, South Africa, December 14-19, 2013. Proceedings, volume 8312 of Lecture Notes in Computer Science, pages 35-52. Springer, 2013. URL: https://doi.org/10.1007/978-3-642-45221-5_3.
  7. Alessandro Artale, Roman Kontchakov, Vladislav Ryzhikov, and Michael Zakharyaschev. A cookbook for temporal conceptual data modelling with description logics. ACM Trans. Comput. Log., 15(3):25:1-25:50, 2014. URL: https://doi.org/10.1145/2629565.
  8. Michael Benedikt, Balder ten Cate, Thomas Colcombet, and Michael Vanden Boom. The complexity of boundedness for guarded logics. In 30th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2015, Kyoto, Japan, July 6-10, 2015, pages 293-304. IEEE Computer Society, 2015. URL: https://doi.org/10.1109/LICS.2015.36.
  9. Meghyn Bienvenu, Balder ten Cate, Carsten Lutz, and Frank Wolter. Ontology-based data access: A study through disjunctive datalog, csp, and MMSNP. ACM Trans. Database Syst., 39(4):33:1-33:44, 2014. URL: https://doi.org/10.1145/2661643.
  10. Sebastian Brandt, Elem Güzel Kalayci, Vladislav Ryzhikov, Guohui Xiao, and Michael Zakharyaschev. Querying log data with metric temporal logic. J. Artif. Intell. Res., 62:829-877, 2018. URL: https://doi.org/10.1613/jair.1.11229.
  11. Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini, and Riccardo Rosati. Tractable reasoning and efficient query answering in description logics: The DL-Lite family. J. Autom. Reason., 39(3):385-429, 2007. URL: https://doi.org/10.1007/s10817-007-9078-x.
  12. Jan Chomicki. Polynomial time query processing in temporal deductive databases. In Daniel J. Rosenkrantz and Yehoshua Sagiv, editors, Proceedings of the Ninth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, April 2-4, 1990, Nashville, Tennessee, USA, pages 379-391. ACM Press, 1990. URL: https://doi.org/10.1145/298514.298589.
  13. Jan Chomicki and Tomasz Imielinski. Temporal deductive databases and infinite objects. In Chris Edmondson-Yurkanan and Mihalis Yannakakis, editors, Proceedings of the Seventh ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, March 21-23, 1988, Austin, Texas, USA, pages 61-73. ACM, 1988. URL: https://doi.org/10.1145/308386.308416.
  14. Jan Chomicki, David Toman, and Michael H. Böhlen. Querying ATSQL databases with temporal logic. ACM Trans. Database Syst., 26(2):145-178, 2001. URL: https://doi.org/10.1145/383891.383892.
  15. Stavros S. Cosmadakis, Haim Gaifman, Paris C. Kanellakis, and Moshe Y. Vardi. Decidable optimization problems for database logic programs (preliminary report). In Janos Simon, editor, Proceedings of the 20th Annual ACM Symposium on Theory of Computing, May 2-4, 1988, Chicago, Illinois, USA, pages 477-490. ACM, 1988. URL: https://doi.org/10.1145/62212.62259.
  16. Evgeny Dantsin, Thomas Eiter, Georg Gottlob, and Andrei Voronkov. Complexity and expressive power of logic programming. ACM Comput. Surv., 33(3):374-425, 2001. URL: https://doi.org/10.1145/502807.502810.
  17. Stéphane Demri, Valentin Goranko, and Martin Lange. Temporal Logics in Computer Science: Finite-State Systems. Cambridge Tracts in Theoretical Computer Science. Cambridge University Press, 2016. URL: https://doi.org/10.1017/CBO9781139236119.
  18. Cristina Feier, Antti Kuusisto, and Carsten Lutz. Rewritability in monadic disjunctive datalog, mmsnp, and expressive description logics. Log. Methods Comput. Sci., 15(2), 2019. URL: https://doi.org/10.23638/LMCS-15(2:15)2019.
  19. Valeria Fionda and Giuseppe Pirrò. Characterizing evolutionary trends in temporal knowledge graphs with linear temporal logic. In Jingrui He, Themis Palpanas, Xiaohua Hu, Alfredo Cuzzocrea, Dejing Dou, Dominik Slezak, Wei Wang, Aleksandra Gruca, Jerry Chun-Wei Lin, and Rakesh Agrawal, editors, IEEE International Conference on Big Data, BigData 2023, Sorrento, Italy, December 15-18, 2023, pages 2907-2909. IEEE, 2023. URL: https://doi.org/10.1109/BigData59044.2023.10386573.
  20. International Organization for Standardization. Information technology — database languages — sql — part 2: Foundation (sql/foundation), 1999. URL: https://www.iso.org/standard/23532.html.
  21. Nadime Francis, Alastair Green, Paolo Guagliardo, Leonid Libkin, Tobias Lindaaker, Victor Marsault, Stefan Plantikow, Mats Rydberg, Petra Selmer, and Andrés Taylor. Cypher: An evolving query language for property graphs. In Gautam Das, Christopher M. Jermaine, and Philip A. Bernstein, editors, Proceedings of the 2018 International Conference on Management of Data, SIGMOD Conference 2018, Houston, TX, USA, June 10-15, 2018, pages 1433-1445. ACM, 2018. URL: https://doi.org/10.1145/3183713.3190657.
  22. Víctor Gutiérrez-Basulto, Jean Christoph Jung, and Roman Kontchakov. Temporalized EL ontologies for accessing temporal data: Complexity of atomic queries. In Subbarao Kambhampati, editor, Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI 2016, New York, NY, USA, 9-15 July 2016, pages 1102-1108. IJCAI/AAAI Press, 2016. URL: http://www.ijcai.org/Abstract/16/160.
  23. Steve Harris and Andy Seaborne. Sparql 1.1 query language. https://www.w3.org/TR/sparql11-query/, 2013. W3C Recommendation, 21 March 2013.
  24. Gerd G. Hillebrand, Paris C. Kanellakis, Harry G. Mairson, and Moshe Y. Vardi. Undecidable boundedness problems for datalog programs. J. Log. Program., 25(2):163-190, 1995. URL: https://doi.org/10.1016/0743-1066(95)00051-K.
  25. Ismail Husein, Herman Mawengkang, Saib Suwilo, and Mardiningsih. Modeling the transmission of infectious disease in a dynamic network. Journal of Physics: Conference Series, 1255(1):012052, August 2019. URL: https://dx.doi.org/10.1088/1742-6596/1255/1/012052.
  26. Neil Immerman. Descriptive complexity. Graduate texts in computer science. Springer, 1999. URL: https://doi.org/10.1007/978-1-4612-0539-5.
  27. Paris C. Kanellakis. Elements of relational database theory. In Jan van Leeuwen, editor, Handbook of Theoretical Computer Science, Volume B: Formal Models and Semantics, pages 1073-1156. Elsevier and MIT Press, 1990. URL: https://doi.org/10.1016/b978-0-444-88074-1.50022-6.
  28. Kevin Cullinane. Modeling dynamic transportation networks: Bin ran and david boyce springer 1996 isbn 3540611398. Journal of Transport Geography, 6(1):76-78, 1998. URL: https://doi.org/10.1016/S0966-6923(98)90041-2.
  29. Stanislav Kikot, Agi Kurucz, Vladimir V. Podolskii, and Michael Zakharyaschev. Deciding boundedness of monadic sirups. In Leonid Libkin, Reinhard Pichler, and Paolo Guagliardo, editors, PODS'21: Proceedings of the 40th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, Virtual Event, China, June 20-25, 2021, pages 370-387. ACM, 2021. URL: https://doi.org/10.1145/3452021.3458332.
  30. Ron Koymans. Specifying real-time properties with metric temporal logic. Real Time Syst., 2(4):255-299, 1990. URL: https://doi.org/10.1007/BF01995674.
  31. Agi Kurucz, Vladislav Ryzhikov, Yury Savateev, and Michael Zakharyaschev. Deciding fo-rewritability of regular languages and ontology-mediated queries in linear temporal logic. J. Artif. Intell. Res., 76:645-703, 2023. URL: https://doi.org/10.1613/jair.1.14061.
  32. Ling Liu and M. Tamer Özsu, editors. Encyclopedia of Database Systems, Second Edition. Springer, 2018. URL: https://doi.org/10.1007/978-1-4614-8265-9.
  33. Marvin L. Minsky. Computation: finite and infinite machines. Prentice-Hall, Inc., USA, 1967. URL: https://dl.acm.org/doi/book/10.5555/1095587.
  34. Jeffrey F. Naughton. Data independent recursion in deductive databases. J. Comput. Syst. Sci., 38(2):259-289, 1989. URL: https://doi.org/10.1016/0022-0000(89)90003-2.
  35. Juan L. Reutter, Adrián Soto, and Domagoj Vrgoc. Recursion in SPARQL. Semantic Web, 12(5):711-740, 2021. URL: https://doi.org/10.3233/SW-200401.
  36. Vladislav Ryzhikov, Przemyslaw Andrzej Walega, and Michael Zakharyaschev. Data complexity and rewritability of ontology-mediated queries in metric temporal logic under the event-based semantics. In Sarit Kraus, editor, Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence, IJCAI 2019, Macao, China, August 10-16, 2019, pages 1851-1857. ijcai.org, 2019. URL: https://doi.org/10.24963/ijcai.2019/256.
  37. Benjamin Schäfer, Dirk Witthaut, Marc Timme, and Vito Latora. Dynamically induced cascading failures in power grids. Nature Communications, 9(1):1975, May 2018. URL: https://doi.org/10.1038/s41467-018-04287-5.
  38. Brian Skyrms and Robin Pemantle. A dynamic model of social network formation. Proceedings of the National Academy of Sciences, 97(16):9340-9346, 2000. URL: https://arxiv.org/abs/https://www.pnas.org/doi/pdf/10.1073/pnas.97.16.9340.
  39. Richard T. Snodgrass, Ilsoo Ahn, Gad Ariav, Don S. Batory, James Clifford, Curtis E. Dyreson, Ramez Elmasri, Fabio Grandi, Christian S. Jensen, Wolfgang Käfer, Nick Kline, Krishna G. Kulkarni, T. Y. Cliff Leung, Nikos A. Lorentzos, John F. Roddick, Arie Segev, Michael D. Soo, and Suryanarayana M. Sripada. TSQL2 language specification. SIGMOD Rec., 23(1):65-86, 1994. URL: https://doi.org/10.1145/181550.181562.
  40. Howard Straubing. Finite Automata, Formal Logic, and Circuit Complexity. Birkhäuser, Boston, MA, 1994. URL: http://link.springer.com/10.1007/978-1-4612-0289-9.
  41. David Toman. Point vs. interval-based query languages for temporal databases. In Richard Hull, editor, Proceedings of the Fifteenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, June 3-5, 1996, Montreal, Canada, pages 58-67. ACM Press, 1996. URL: https://doi.org/10.1145/237661.237676.
  42. Valentina Urzua and Claudio Gutierrez. Linear recursion in G-CORE. In Aidan Hogan and Tova Milo, editors, Proceedings of the 13th Alberto Mendelzon International Workshop on Foundations of Data Management, Asunción, Paraguay, June 3-7, 2019, volume 2369 of CEUR Workshop Proceedings. CEUR-WS.org, 2019. URL: https://ceur-ws.org/Vol-2369/short07.pdf.
  43. Ron van der Meyden. Predicate boundedness of linear monadic datalog is in PSPACE. Int. J. Found. Comput. Sci., 11(4):591-612, 2000. URL: https://doi.org/10.1142/S0129054100000351.
  44. Dingmin Wang, Pan Hu, Przemyslaw Andrzej Walega, and Bernardo Cuenca Grau. Meteor: Practical reasoning in datalog with metric temporal operators. In Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI 2022, Thirty-Fourth Conference on Innovative Applications of Artificial Intelligence, IAAI 2022, The Twelveth Symposium on Educational Advances in Artificial Intelligence, EAAI 2022 Virtual Event, February 22 - March 1, 2022, pages 5906-5913. AAAI Press, 2022. URL: https://doi.org/10.1609/aaai.v36i5.20535.
  45. Mincheng Wu, Chao Li, Zhangchong Shen, Shibo He, Lingling Tang, Jie Zheng, Yi Fang, Kehan Li, Yanggang Cheng, Zhiguo Shi, Guoping Sheng, Yu Liu, Jinxing Zhu, Xinjiang Ye, Jinlai Chen, Wenrong Chen, Lanjuan Li, Youxian Sun, and Jiming Chen. Use of temporal contact graphs to understand the evolution of covid-19 through contact tracing data. Communications Physics, 5(1):270, 2022. URL: https://doi.org/10.1038/s42005-022-01045-4.
  46. Mengkai Xu, Srinivasan Radhakrishnan, Sagar Kamarthi, and Xiaoning Jin. Resiliency of mutualistic supplier-manufacturer networks. Scientific Reports, 9, September 2019. URL: https://doi.org/10.1038/s41598-019-49932-1.
  47. Dmitriy Zhuk. ∏_2^p vs pspace dichotomy for the quantified constraint satisfaction problem. In 65th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2024, Chicago, IL, USA, October 27-30, 2024, pages 560-572. IEEE, 2024. URL: https://doi.org/10.1109/FOCS61266.2024.00043.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail