Enumeration of Minimal Hitting Sets Parameterized by Treewidth

Authors Batya Kenig , Dan Shlomo Mizrahi



PDF
Thumbnail PDF

File

LIPIcs.ICDT.2025.8.pdf
  • Filesize: 0.96 MB
  • 20 pages

Document Identifiers

Author Details

Batya Kenig
  • Technion, Israel Institute of Technology, Haifa, Israel
Dan Shlomo Mizrahi
  • Technion, Israel Institute of Technology, Haifa, Israel

Cite As Get BibTex

Batya Kenig and Dan Shlomo Mizrahi. Enumeration of Minimal Hitting Sets Parameterized by Treewidth. In 28th International Conference on Database Theory (ICDT 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 328, pp. 8:1-8:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025) https://doi.org/10.4230/LIPIcs.ICDT.2025.8

Abstract

Enumerating the minimal hitting sets of a hypergraph is a problem which arises in many data management applications that include constraint mining, discovering unique column combinations, and enumerating database repairs. Previously, Eiter et al. [Thomas Eiter et al., 2003] showed that the minimal hitting sets of an n-vertex hypergraph, with treewidth w, can be enumerated with delay O^*(n^w) (ignoring polynomial factors), with space requirements that scale with the output size. We improve this to fixed-parameter-linear delay, following an FPT preprocessing phase. The memory consumption of our algorithm is exponential with respect to the treewidth of the hypergraph.

Subject Classification

ACM Subject Classification
  • Mathematics of computing → Enumeration
Keywords
  • Enumeration
  • Hitting sets

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Ziawasch Abedjan, Lukasz Golab, Felix Naumann, and Thorsten Papenbrock. Data Profiling. Synthesis Lectures on Data Management. Morgan & Claypool Publishers, 2018. URL: https://doi.org/10.2200/S00878ED1V01Y201810DTM052.
  2. Antoine Amarilli, Pierre Bourhis, Louis Jachiet, and Stefan Mengel. A circuit-based approach to efficient enumeration. In Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl, editors, 44th International Colloquium on Automata, Languages, and Programming, ICALP 2017, July 10-14, 2017, Warsaw, Poland, volume 80 of LIPIcs, pages 111:1-111:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017. URL: https://doi.org/10.4230/LIPIcs.ICALP.2017.111.
  3. Stefan Arnborg, Jens Lagergren, and Detlef Seese. Easy problems for tree-decomposable graphs. J. Algorithms, 12(2):308-340, 1991. URL: https://doi.org/10.1016/0196-6774(91)90006-K.
  4. Guillaume Bagan. MSO queries on tree decomposable structures are computable with linear delay. In Zoltán Ésik, editor, Computer Science Logic, 20th International Workshop, CSL 2006, 15th Annual Conference of the EACSL, Szeged, Hungary, September 25-29, 2006, Proceedings, volume 4207 of Lecture Notes in Computer Science, pages 167-181. Springer, 2006. URL: https://doi.org/10.1007/11874683_11.
  5. Julien Baste, Ignasi Sau, and Dimitrios M. Thilikos. A complexity dichotomy for hitting connected minors on bounded treewidth graphs: the chair and the banner draw the boundary. In Shuchi Chawla, editor, Proceedings of the 2020 ACM-SIAM Symposium on Discrete Algorithms, SODA 2020, Salt Lake City, UT, USA, January 5-8, 2020, pages 951-970. SIAM, 2020. URL: https://doi.org/10.1137/1.9781611975994.57.
  6. Paul Beame, Guy Van den Broeck, Eric Gribkoff, and Dan Suciu. Symmetric weighted first-order model counting. In Tova Milo and Diego Calvanese, editors, Proceedings of the 34th ACM Symposium on Principles of Database Systems, PODS 2015, Melbourne, Victoria, Australia, May 31 - June 4, 2015, pages 313-328. ACM, 2015. URL: https://doi.org/10.1145/2745754.2745760.
  7. Leopoldo E. Bertossi. Database Repairing and Consistent Query Answering. Synthesis Lectures on Data Management. Morgan & Claypool Publishers, 2011. URL: https://doi.org/10.2200/S00379ED1V01Y201108DTM020.
  8. Johann Birnick, Thomas Bläsius, Tobias Friedrich, Felix Naumann, Thorsten Papenbrock, and Martin Schirneck. Hitting set enumeration with partial information for unique column combination discovery. Proc. VLDB Endow., 13(11):2270-2283, 2020. URL: http://www.vldb.org/pvldb/vol13/p2270-birnick.pdf.
  9. Thomas Bläsius, Tobias Friedrich, Julius Lischeid, Kitty Meeks, and Martin Schirneck. Efficiently enumerating hitting sets of hypergraphs arising in data profiling. J. Comput. Syst. Sci., 124:192-213, 2022. URL: https://doi.org/10.1016/j.jcss.2021.10.002.
  10. Endre Boros, Khaled M. Elbassioni, Vladimir Gurvich, and Leonid Khachiyan. An efficient incremental algorithm for generating all maximal independent sets in hypergraphs of bounded dimension. Parallel Process. Lett., 10(4):253-266, 2000. URL: https://doi.org/10.1142/S0129626400000251.
  11. Jan Chomicki and Jerzy Marcinkowski. Minimal-change integrity maintenance using tuple deletions. Inf. Comput., 197(1-2):90-121, 2005. URL: https://doi.org/10.1016/j.ic.2004.04.007.
  12. Jan Chomicki, Jerzy Marcinkowski, and Slawomir Staworko. Computing consistent query answers using conflict hypergraphs. In David A. Grossman, Luis Gravano, ChengXiang Zhai, Otthein Herzog, and David A. Evans, editors, Proceedings of the 2004 ACM CIKM International Conference on Information and Knowledge Management, Washington, DC, USA, November 8-13, 2004, pages 417-426. ACM, 2004. URL: https://doi.org/10.1145/1031171.1031254.
  13. Bruno Courcelle. Graph rewriting: An algebraic and logic approach. In Jan van Leeuwen, editor, Handbook of Theoretical Computer Science, Volume B: Formal Models and Semantics, pages 193-242. Elsevier and MIT Press, 1990. URL: https://doi.org/10.1016/b978-0-444-88074-1.50010-x.
  14. Bruno Courcelle. Linear delay enumeration and monadic second-order logic. Discret. Appl. Math., 157(12):2675-2700, 2009. URL: https://doi.org/10.1016/j.dam.2008.08.021.
  15. Bruno Courcelle. On the model-checking of monadic second-order formulas with edge set quantifications. Discret. Appl. Math., 160(6):866-887, 2012. URL: https://doi.org/10.1016/J.DAM.2010.12.017.
  16. Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Daniel Marx, Marcin Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer Publishing Company, Incorporated, 1st edition, 2015. Google Scholar
  17. John Doner. Tree acceptors and some of their applications. J. Comput. Syst. Sci., 4(5):406-451, 1970. URL: https://doi.org/10.1016/S0022-0000(70)80041-1.
  18. Louis Dublois, Michael Lampis, and Vangelis Th. Paschos. Upper dominating set: Tight algorithms for pathwidth and sub-exponential approximation. Theor. Comput. Sci., 923:271-291, 2022. URL: https://doi.org/10.1016/J.TCS.2022.05.013.
  19. David Duris. Some characterizations of γ and β-acyclicity of hypergraphs. Inf. Process. Lett., 112(16):617-620, 2012. URL: https://doi.org/10.1016/j.ipl.2012.05.005.
  20. Thomas Eiter and Georg Gottlob. Identifying the minimal transversals of a hypergraph and related problems. SIAM J. Comput., 24(6):1278-1304, 1995. URL: https://doi.org/10.1137/S0097539793250299.
  21. Thomas Eiter and Georg Gottlob. Hypergraph transversal computation and related problems in logic and AI. In Sergio Flesca, Sergio Greco, Nicola Leone, and Giovambattista Ianni, editors, Logics in Artificial Intelligence, European Conference, JELIA 2002, Cosenza, Italy, September, 23-26, Proceedings, volume 2424 of Lecture Notes in Computer Science, pages 549-564. Springer, 2002. URL: https://doi.org/10.1007/3-540-45757-7_53.
  22. Thomas Eiter, Georg Gottlob, and Kazuhisa Makino. New results on monotone dualization and generating hypergraph transversals. SIAM J. Comput., 32(2):514-537, 2003. URL: https://doi.org/10.1137/S009753970240639X.
  23. Thomas Eiter, Kazuhisa Makino, and Georg Gottlob. Computational aspects of monotone dualization: A brief survey. Discret. Appl. Math., 156(11):2035-2049, 2008. URL: https://doi.org/10.1016/j.dam.2007.04.017.
  24. Ronald Fagin. Degrees of acyclicity for hypergraphs and relational database schemes. J. ACM, 30(3):514-550, 1983. URL: https://doi.org/10.1145/2402.322390.
  25. Jörg Flum, Markus Frick, and Martin Grohe. Query evaluation via tree-decompositions. J. ACM, 49(6):716-752, 2002. URL: https://doi.org/10.1145/602220.602222.
  26. Jörg Flum and Martin Grohe. Parameterized Complexity Theory. Texts in Theoretical Computer Science. An EATCS Series. Springer, 2006. URL: https://doi.org/10.1007/3-540-29953-X.
  27. Michael L. Fredman and Leonid Khachiyan. On the complexity of dualization of monotone disjunctive normal forms. J. Algorithms, 21(3):618-628, 1996. URL: https://doi.org/10.1006/jagm.1996.0062.
  28. Markus Frick and Martin Grohe. The complexity of first-order and monadic second-order logic revisited. Annals of Pure and Applied Logic, 130(1):3-31, 2004. Papers presented at the 2002 IEEE Symposium on Logic in Computer Science (LICS). URL: https://doi.org/10.1016/j.apal.2004.01.007.
  29. Andrew Gainer-Dewar and Paola Vera-Licona. The minimal hitting set generation problem: Algorithms and computation. SIAM J. Discret. Math., 31(1):63-100, 2017. URL: https://doi.org/10.1137/15M1055024.
  30. Fanica Gavril. A recognition algorithm for the intersection graphs of directed paths in directed trees. Discret. Math., 13(3):237-249, 1975. URL: https://doi.org/10.1016/0012-365X(75)90021-7.
  31. Georg Gottlob, Reinhard Pichler, and Fang Wei. Bounded treewidth as a key to tractability of knowledge representation and reasoning. Artif. Intell., 174(1):105-132, 2010. URL: https://doi.org/10.1016/J.ARTINT.2009.10.003.
  32. Georg Gottlob, Reinhard Pichler, and Fang Wei. Monadic datalog over finite structures of bounded treewidth. ACM Trans. Comput. Log., 12(1):3:1-3:48, 2010. URL: https://doi.org/10.1145/1838552.1838555.
  33. Dimitrios Gunopulos, Roni Khardon, Heikki Mannila, Sanjeev Saluja, Hannu Toivonen, and Ram Sewak Sharm. Discovering all most specific sentences. ACM Trans. Database Syst., 28(2):140-174, 2003. URL: https://doi.org/10.1145/777943.777945.
  34. Mamadou Moustapha Kanté, Vincent Limouzy, Arnaud Mary, and Lhouari Nourine. On the enumeration of minimal dominating sets and related notions. SIAM J. Discret. Math., 28(4):1916-1929, 2014. URL: https://doi.org/10.1137/120862612.
  35. Ahmet Kara and Dan Olteanu. Covers of query results. In Benny Kimelfeld and Yael Amsterdamer, editors, 21st International Conference on Database Theory, ICDT 2018, March 26-29, 2018, Vienna, Austria, volume 98 of LIPIcs, pages 16:1-16:22. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018. URL: https://doi.org/10.4230/LIPICS.ICDT.2018.16.
  36. Batya Kenig and Avigdor Gal. On the impact of junction-tree topology on weighted model counting. In Christoph Beierle and Alex Dekhtyar, editors, Scalable Uncertainty Management - 9th International Conference, SUM 2015, Québec City, QC, Canada, September 16-18, 2015. Proceedings, volume 9310 of Lecture Notes in Computer Science, pages 83-98. Springer, 2015. URL: https://doi.org/10.1007/978-3-319-23540-0_6.
  37. Batya Kenig, Avigdor Gal, and Ofer Strichman. A new class of lineage expressions over probabilistic databases computable in p-time. In Weiru Liu, V. S. Subrahmanian, and Jef Wijsen, editors, Scalable Uncertainty Management - 7th International Conference, SUM 2013, Washington, DC, USA, September 16-18, 2013. Proceedings, volume 8078 of Lecture Notes in Computer Science, pages 219-232. Springer, 2013. URL: https://doi.org/10.1007/978-3-642-40381-1_17.
  38. Batya Kenig, Benny Kimelfeld, Haoyue Ping, and Julia Stoyanovich. Querying probabilistic preferences in databases. In Emanuel Sallinger, Jan Van den Bussche, and Floris Geerts, editors, Proceedings of the 36th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, PODS 2017, Chicago, IL, USA, May 14-19, 2017, pages 21-36. ACM, 2017. URL: https://doi.org/10.1145/3034786.3056111.
  39. Batya Kenig and Dan Shlomo Mizrahi. Enumeration of minimal hitting sets parameterized by treewidth. CoRR, abs/2408.15776, 2024. URL: https://doi.org/10.48550/arXiv.2408.15776.
  40. Batya Kenig, Pranay Mundra, Guna Prasaad, Babak Salimi, and Dan Suciu. Mining approximate acyclic schemes from relations. In David Maier, Rachel Pottinger, AnHai Doan, Wang-Chiew Tan, Abdussalam Alawini, and Hung Q. Ngo, editors, Proceedings of the 2020 International Conference on Management of Data, SIGMOD Conference 2020, online conference [Portland, OR, USA], June 14-19, 2020, pages 297-312. ACM, 2020. URL: https://doi.org/10.1145/3318464.3380573.
  41. Batya Kenig and Nir Weinberger. Quantifying the loss of acyclic join dependencies. In Floris Geerts, Hung Q. Ngo, and Stavros Sintos, editors, Proceedings of the 42nd ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, PODS 2023, Seattle, WA, USA, June 18-23, 2023, pages 329-338. ACM, 2023. URL: https://doi.org/10.1145/3584372.3588658.
  42. Benny Kimelfeld, Ester Livshits, and Liat Peterfreund. Counting and enumerating preferred database repairs. Theor. Comput. Sci., 837:115-157, 2020. URL: https://doi.org/10.1016/j.tcs.2020.05.016.
  43. Ton Kloks. Treewidth, Computations and Approximations, volume 842 of Lecture Notes in Computer Science. Springer, 1994. URL: https://doi.org/10.1007/BFb0045375.
  44. Joachim Kneis and Alexander Langer. A practical approach to courcelle’s theorem. In Milan Ceska, Zdenek Kotásek, Mojmír Kretínský, Ludek Matyska, and Tomás Vojnar, editors, Proceedings of the International Doctoral Workshop on Mathematical and Engineering Methods in Computer Science, MEMICS 2008, Znojmo, Czech Republic, November 14-16, 2008, volume 251 of Electronic Notes in Theoretical Computer Science, pages 65-81. Elsevier, 2008. URL: https://doi.org/10.1016/J.ENTCS.2009.08.028.
  45. Jan Kossmann, Thorsten Papenbrock, and Felix Naumann. Data dependencies for query optimization: a survey. VLDB J., 31(1):1-22, 2022. URL: https://doi.org/10.1007/S00778-021-00676-3.
  46. Sebastian Kruse and Felix Naumann. Efficient discovery of approximate dependencies. Proc. VLDB Endow., 11(7):759-772, 2018. URL: https://doi.org/10.14778/3192965.3192968.
  47. Alexander Langer, Felix Reidl, Peter Rossmanith, and Somnath Sikdar. Practical algorithms for MSO model-checking on tree-decomposable graphs. Comput. Sci. Rev., 13-14:39-74, 2014. URL: https://doi.org/10.1016/j.cosrev.2014.08.001.
  48. Ester Livshits, Alireza Heidari, Ihab F. Ilyas, and Benny Kimelfeld. Approximate denial constraints. Proc. VLDB Endow., 13(10):1682-1695, 2020. URL: https://doi.org/10.14778/3401960.3401966.
  49. Daniel Lokshtanov, Dániel Marx, and Saket Saurabh. Slightly superexponential parameterized problems. SIAM J. Comput., 47(3):675-702, 2018. URL: https://doi.org/10.1137/16M1104834.
  50. Heikki Mannila and Kari-Jouko Räihä. Dependency inference. In Peter M. Stocker, William Kent, and Peter Hammersley, editors, VLDB'87, Proceedings of 13th International Conference on Very Large Data Bases, September 1-4, 1987, Brighton, England, pages 155-158. Morgan Kaufmann, 1987. URL: http://www.vldb.org/conf/1987/P155.PDF.
  51. Keisuke Murakami and Takeaki Uno. Efficient algorithms for dualizing large-scale hypergraphs. Discret. Appl. Math., 170:83-94, 2014. URL: https://doi.org/10.1016/J.DAM.2014.01.012.
  52. Ronald C. Read and Robert E. Tarjan. Bounds on backtrack algorithms for listing cycles, paths, and spanning trees. Networks, 5(3):237-252, 1975. URL: https://doi.org/10.1002/net.1975.5.3.237.
  53. Klaus Reinhardt. The complexity of translating logic to finite automata. In Erich Grädel, Wolfgang Thomas, and Thomas Wilke, editors, Automata, Logics, and Infinite Games: A Guide to Current Research [outcome of a Dagstuhl seminar, February 2001], volume 2500 of Lecture Notes in Computer Science, pages 231-238. Springer, 2001. URL: https://doi.org/10.1007/3-540-36387-4_13.
  54. Günter Rote. Minimal dominating sets in a tree: Counting, enumeration, and extremal results. CoRR, abs/1903.04517, 2019. URL: https://arxiv.org/abs/1903.04517.
  55. James W. Thatcher and Jesse B. Wright. Generalized finite automata theory with an application to a decision problem of second-order logic. Math. Syst. Theory, 2(1):57-81, 1968. URL: https://doi.org/10.1007/BF01691346.
  56. Alexei Vazquez. Optimal drug combinations and minimal hitting sets. BMC Syst. Biol., 3:81, 2009. URL: https://doi.org/10.1186/1752-0509-3-81.
  57. Paola Vera-Licona, Eric Bonnet, Emmanuel Barillot, and Andrei Zinovyev. OCSANA: optimal combinations of interventions from network analysis. Bioinformatics, 29(12):1571-1573, April 2013. _eprint: https://academic.oup.com/bioinformatics/article-pdf/29/12/1571/48886062/bioinformatics_29_12_1571.pdf. URL: https://doi.org/10.1093/bioinformatics/btt195.
  58. M. Weyer. Modifizierte parametrische komplexitätstheorie. PhD Thesis, Universität Freiburg, 2008. Google Scholar
  59. R. Xiao, Y. Yuan, Z. Tan, S. Ma, and W. Wang. Dynamic functional dependency discovery with dynamic hitting set enumeration. In 2022 IEEE 38th International Conference on Data Engineering (ICDE), pages 286-298, Los Alamitos, CA, USA, May 2022. IEEE Computer Society. URL: https://doi.org/10.1109/ICDE53745.2022.00026.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail