B-Chromatic Number: Beyond NP-Hardness

Authors Fahad Panolan, Geevarghese Philip, Saket Saurabh

Thumbnail PDF


  • Filesize: 0.49 MB
  • 13 pages

Document Identifiers

Author Details

Fahad Panolan
Geevarghese Philip
Saket Saurabh

Cite AsGet BibTex

Fahad Panolan, Geevarghese Philip, and Saket Saurabh. B-Chromatic Number: Beyond NP-Hardness. In 10th International Symposium on Parameterized and Exact Computation (IPEC 2015). Leibniz International Proceedings in Informatics (LIPIcs), Volume 43, pp. 389-401, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2015)


The b-chromatic number of a graph G, chi_b(G), is the largest integer k such that G has a k-vertex coloring with the property that each color class has a vertex which is adjacent to at least one vertex in each of the other color classes. In the B-Chromatic Number problem, the objective is to decide whether chi_b(G) >= k. Testing whether chi_b(G)=Delta(G)+1, where Delta(G) is the maximum degree of a graph, itself is NP-complete even for connected bipartite graphs (Kratochvil, Tuza and Voigt, WG 2002). In this paper we study B-Chromatic Number in the realm of parameterized complexity and exact exponential time algorithms. We show that B-Chromatic Number is W[1]-hard when parameterized by k, resolving the open question posed by Havet and Sampaio (Algorithmica 2013). When k=Delta(G)+1, we design an algorithm for B-Chromatic Number running in time 2^{O(k^2 * log(k))}*n^{O(1)}. Finally, we show that B-Chromatic Number for an n-vertex graph can be solved in time O(3^n * n^{4} * log(n)).
  • b-chromatic number
  • exact algorithm
  • parameterized complexity


  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    PDF Downloads


  1. Kenneth Appel and Wolfgang Haken. The solution of the four-color-map problem. Sci Am, 237(4):108-121, October 1977. Google Scholar
  2. Andreas Björklund, Thore Husfeldt, and Mikko Koivisto. Set partitioning via inclusion-exclusion. SIAM J. Computing, 39(2):546-563, 2009. Google Scholar
  3. Manfred Cochefert. Algorithmes Exacts et Exponentiels pour les Problèmes NP-difficiles sur les Graphes et Hypergraphes. PhD thesis, Université de Lorraine, December 2014. Google Scholar
  4. Marek Cygan, Fedor V. Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015. Google Scholar
  5. Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity. Texts in Computer Science. Springer, 2013. Google Scholar
  6. Brice Effantin, Nicolas Gastineau, and Olivier Togni. A characterization of b-chromatic and partial grundy numbers by induced subgraphs. CoRR, abs/1505.07780, 2015. Google Scholar
  7. Frantisek Galcík and Ján Katrenic. A note on approximating the b-chromatic number. Discrete Applied Mathematics, 161(7-8):1137-1140, 2013. Google Scholar
  8. Frédéric Havet, Cláudia Linhares Sales, and Leonardo Sampaio. b-coloring of tight graphs. Discrete Applied Mathematics, 160(18):2709-2715, 2012. Google Scholar
  9. Frédéric Havet and Leonardo Sampaio. On the grundy and b-chromatic numbers of a graph. Algorithmica, 65(4):885-899, 2013. Google Scholar
  10. Robert W. Irving and David Manlove. The b-chromatic number of a graph. Discrete Applied Mathematics, 91(1-3):127-141, 1999. Google Scholar
  11. Richard M. Karp. Reducibility among combinatorial problems. In Complexity of computer computations, pages 85-103. Plenum Press, New York, 1972. Google Scholar
  12. Jan Kratochvíl, Zsolt Tuza, and Margit Voigt. On the b-chromatic number of graphs. In Ludek Kucera, editor, Graph-Theoretic Concepts in Computer Science, 28th International Workshop, WG 2002, Cesky Krumlov, Czech Republic, June 13-15, 2002, Revised Papers, volume 2573 of Lecture Notes in Computer Science, pages 310-320. Springer, 2002. Google Scholar
  13. E. L. Lawler. A note on the complexity of the chromatic number problem. Information Processing Lett., 5(3):66-67, 1976. Google Scholar
  14. Arnold Schönhage and Volker Strassen. Schnelle Multiplikation großer Zahlen. Computing, 7(3-4):281-292, 1971. Google Scholar