Document

# Structural Parameterizations of Feedback Vertex Set

## File

LIPIcs.IPEC.2016.21.pdf
• Filesize: 0.64 MB
• 16 pages

## Cite As

Diptapriyo Majumdar. Structural Parameterizations of Feedback Vertex Set. In 11th International Symposium on Parameterized and Exact Computation (IPEC 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 63, pp. 21:1-21:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)
https://doi.org/10.4230/LIPIcs.IPEC.2016.21

## Abstract

A feedback vertex set in an undirected graph is a subset of vertices whose removal results in an acyclic graph. It is well-known that the problem of finding a minimum sized (or k sized in case of decision version of) feedback vertex set (FVS) is polynomial time solvable in (sub)-cubic graphs, in pseudo-forests (graphs where each component has at most one cycle) and mock-forests (graph where each vertex is part of at most one cycle). In general graphs, it is known that the problem is NP-Complete, and has an O*((3.619)^k) fixed-parameter algorithm and an O(k^2) kernel where k, the solution size is the parameter. We consider the parameterized and kernelization complexity of feedback vertex set where the parameter is the size of some structure of the input. In particular, we show that * FVS is fixed-parameter tractable, but is unlikely to have polynomial sized kernel when parameterized by the number of vertices of the graph whose degree is at least 4. This answers a question asked in an earlier paper. * When parameterized by k, the number of vertices, whose deletion results in a pseudo-forest, we give an O(k^6) vertices kernel improving from the previously known O(k^{10}) bound. * When parameterized by the number k of vertices, whose deletion results in a mock-d-forest, we give a kernel consisting of O(k^{3d+3}) vertices and prove a lower bound of Omega(k^{d+2}) vertices (under complexity theoretic assumptions). Mock-d-forest for a constant d is a mock-forest where each component has at most d cycles.
##### Keywords
• Parameterized Complexity
• Kernelization
• Feedback Vertex Set
• Structural Parameterization

## Metrics

• Access Statistics
• Total Accesses (updated on a weekly basis)
0
PDF Downloads

## References

1. E. Balas and C. S. Yu. On graphs with polynomially solvable maximum-weight clique problem. Networks, 19(2):247-253, 1989.
2. H. L. Bodlaender, B. M. P. Jansen, and S. Kratsch. Kernelization lower bounds by cross-composition. SIAM J. Discrete Math., 28(1):277-305, 2014.
3. H. L. Bodlaender, S. Thomassé, and Anders Yeo. Kernel bounds for disjoint cycles and disjoint paths. Theor. Comput. Sci., 412(35):4570-4578, 2011.
4. H. L. Bodlaender and T. C. van Dijk. A cubic kernel for feedback vertex set and loop cutset. Theory Comput. Syst., 46(3):566-597, 2010.
5. Y. Cao, J. Chen, and Y. Liu. On feedback vertex set: New measure and new structures. Algorithmica, 73(1):63-86, 2015.
6. M. Cygan, F. V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk, M. Pilipczuk, and S. Saurabh. Parameterized Algorithms. Springer, 2015.
7. H. Dell and D. van Melkebeek. Satisfiability allows no nontrivial sparsification unless the polynomial-time hierarchy collapses. J. ACM, 61(4):23:1-23:27, 2014.
8. R. G. Downey and M. R. Fellows. Fundamentals of Parameterized Complexity. Texts in Computer Science. Springer, 2013.
9. M. R. Fellows, B. M. P. Jansen, and F. A. Rosamond. Towards fully multivariate algorithmics: Parameter ecology and the deconstruction of computational complexity. Eur. J. Comb., 34(3):541-566, 2013.
10. F. V. Fomin, D. Lokshtanov, N. Misra, and S. Saurabh. Planar F-Deletion: Approximation, Kernelization and Optimal FPT Algorithms. In Proceedings of FOCS, pages 470-479, 2012.
11. L. Fortnow and R. Santhanam. Infeasibility of instance compression and succinct PCPs for NP. J. Comput. Syst. Sci., 77(1):91-106, 2011.
12. T. Fujito. A unified approximation algorithm for node-deletion problems. Discrete Applied Mathematics, 86(2-3):213-231, 1998.
13. M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman, 1979.
14. G. Gutin, E. J. Kim, M. Lampis, and V. Mitsou. Vertex cover problem parameterized above and below tight bounds. Theory Comput. Syst., 48(2):402-410, 2011.
15. B. M. P. Jansen and S. Kratsch. Data reduction for graph coloring problems. Inf. Comput., 231:70-88, 2013.
16. B. M. P. Jansen, V. Raman, and M. Vatshelle. Parameter ecology for feedback vertex set. Tsinghua Science and Technology, 19(4):387-409, 2014.
17. T. Kloks, C. Liu, and S. Poon. Feedback vertex set on chordal bipartite graphs. CoRR, abs/1104.3915v2, 2011.
18. T. Kociumaka and M. Pilipczuk. Faster deterministic feedback vertex set. Inf. Process. Lett., 114(10):556-560, 2014.
19. D. Kratsch, H. Müller, and I. Todinca. Feedback vertex set on at-free graphs. Discrete Applied Mathematics, 156(10):1936-1947, 2008.
20. R. Rizzi. Minimum weakly fundamental cycle bases are hard to find. Algorithmica, 53(3):402-424, 2009.
21. S. Thomassé. A 4k² kernel for feedback vertex set. ACM Trans. Algorithms, 6(2), 2010.
22. S. Ueno, Y. Kajitani, and S. Gotoh. On the nonseparating independent set problem and feedback set problem for graphs with no vertex degree exceeding three. Discrete Mathematics, 72(1-3):355-360, 1988.