Document Open Access Logo

PACE Solver Description: The KaPoCE Exact Cluster Editing Algorithm

Authors Thomas Bläsius, Philipp Fischbeck, Lars Gottesbüren, Michael Hamann, Tobias Heuer, Jonas Spinner, Christopher Weyand, Marcus Wilhelm



PDF
Thumbnail PDF

File

LIPIcs.IPEC.2021.27.pdf
  • Filesize: 384 kB
  • 3 pages

Document Identifiers

Author Details

Thomas Bläsius
  • Karlsruhe Institute of Technology, Germany
Philipp Fischbeck
  • Hasso Plattner Institute, Potsdam, Germany
Lars Gottesbüren
  • Karlsruhe Institute of Technology, Germany
Michael Hamann
  • Karlsruhe Institute of Technology, Germany
Tobias Heuer
  • Karlsruhe Institute of Technology, Germany
Jonas Spinner
  • Karlsruhe Institute of Technology, Germany
Christopher Weyand
  • Karlsruhe Institute of Technology, Germany
Marcus Wilhelm
  • Karlsruhe Institute of Technology, Germany

Cite AsGet BibTex

Thomas Bläsius, Philipp Fischbeck, Lars Gottesbüren, Michael Hamann, Tobias Heuer, Jonas Spinner, Christopher Weyand, and Marcus Wilhelm. PACE Solver Description: The KaPoCE Exact Cluster Editing Algorithm. In 16th International Symposium on Parameterized and Exact Computation (IPEC 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 214, pp. 27:1-27:3, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021)
https://doi.org/10.4230/LIPIcs.IPEC.2021.27

Abstract

The cluster editing problem is to transform an input graph into a cluster graph by performing a minimum number of edge editing operations. A cluster graph is a graph where each connected component is a clique. An edit operation can be either adding a new edge or removing an existing edge. In this write-up we outline the core techniques used in the exact cluster editing algorithm of the KaPoCE framework (contains also a heuristic solver), submitted to the exact track of the 2021 PACE challenge.

Subject Classification

ACM Subject Classification
  • Mathematics of computing → Graph algorithms
Keywords
  • cluster editing

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Lucas Bastos, Luiz Satoru Ochi, Fábio Protti, Anand Subramanian, Ivan César Martins, and Rian Gabriel S Pinheiro. Efficient algorithms for cluster editing. Journal of Combinatorial Optimization, 31(1):347-371, 2016. Google Scholar
  2. Sebastian Böcker. A golden ratio parameterized algorithm for cluster editing. Journal of Discrete Algorithms, 16:79-89, 2012. Google Scholar
  3. Sebastian Böcker, Sebastian Briesemeister, Quang Bao Anh Bui, and Anke Truß. Going weighted: Parameterized algorithms for cluster editing. Theoretical Computer Science, 410(52):5467-5480, 2009. Google Scholar
  4. Sebastian Böcker, Sebastian Briesemeister, and Gunnar W Klau. Exact algorithms for cluster editing: Evaluation and experiments. Algorithmica, 60(2):316-334, 2011. Google Scholar
  5. Yixin Cao and Jianer Chen. Cluster editing: Kernelization based on edge cuts. Algorithmica, 64(1):152-169, 2012. Google Scholar
  6. Lars Gottesbüren, Michael Hamann, Philipp Schoch, Ben Strasser, Dorothea Wagner, and Sven Zühlsdorf. Engineering Exact Quasi-Threshold Editing. In 18th International Symposium on Experimental Algorithms (SEA 2020), volume 160, pages 10:1-10:14. Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2020. URL: https://doi.org/10.4230/LIPIcs.SEA.2020.10.
  7. Jiong Guo. A more effective linear kernelization for cluster editing. Theoretical Computer Science, 410(8-10):718-726, 2009. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail