We introduce the problem of finding a satisfying assignment to a CNF formula that must further belong to a prescribed input subspace. Equivalent formulations of the problem include finding a point outside a union of subspaces (the Union-of-Subspace Avoidance (USA) problem), and finding a common zero of a system of polynomials over 𝔽₂ each of which is a product of affine forms. We focus on the case of k-CNF formulas (the k-Sub-Sat problem). Clearly, k-Sub-Sat is no easier than k-SAT, and might be harder. Indeed, via simple reductions we show that 2-Sub-Sat is NP-hard, and W[1]-hard when parameterized by the co-dimension of the subspace. We also prove that the optimization version Max-2-Sub-Sat is NP-hard to approximate better than the trivial 3/4 ratio even on satisfiable instances. On the algorithmic front, we investigate fast exponential algorithms which give non-trivial savings over brute-force algorithms. We give a simple branching algorithm with running time (1.5)^r for 2-Sub-Sat, where r is the subspace dimension, as well as an O^*(1.4312)ⁿ time algorithm where n is the number of variables. Turning to k-Sub-Sat for k ⩾ 3, while known algorithms for solving a system of degree k polynomial equations already imply a solution with running time ≈ 2^{r(1-1/2k)}, we explore a more combinatorial approach. Based on an analysis of critical variables (a key notion underlying the randomized k-SAT algorithm of Paturi, Pudlak, and Zane), we give an algorithm with running time ≈ {n choose {⩽t}} 2^{n-n/k} where n is the number of variables and t is the co-dimension of the subspace. This improves upon the running time of the polynomial equations approach for small co-dimension. Our combinatorial approach also achieves polynomial space in contrast to the algebraic approach that uses exponential space. We also give a PPZ-style algorithm for k-Sub-Sat with running time ≈ 2^{n-n/2k}. This algorithm is in fact oblivious to the structure of the subspace, and extends when the subspace-membership constraint is replaced by any constraint for which partial satisfying assignments can be efficiently completed to a full satisfying assignment. Finally, for systems of O(n) polynomial equations in n variables over 𝔽₂, we give a fast exponential algorithm when each polynomial has bounded degree irreducible factors (but can otherwise have large degree) using a degree reduction trick.
@InProceedings{arvind_et_al:LIPIcs.IPEC.2021.5, author = {Arvind, Vikraman and Guruswami, Venkatesan}, title = {{CNF Satisfiability in a Subspace and Related Problems}}, booktitle = {16th International Symposium on Parameterized and Exact Computation (IPEC 2021)}, pages = {5:1--5:15}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-216-7}, ISSN = {1868-8969}, year = {2021}, volume = {214}, editor = {Golovach, Petr A. and Zehavi, Meirav}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.IPEC.2021.5}, URN = {urn:nbn:de:0030-drops-153886}, doi = {10.4230/LIPIcs.IPEC.2021.5}, annote = {Keywords: CNF Satisfiability, Exact exponential algorithms, Hardness results} }
Feedback for Dagstuhl Publishing