Document

# A Finite Algorithm for the Realizabilty of a Delaunay Triangulation

## File

LIPIcs.IPEC.2022.1.pdf
• Filesize: 1.1 MB
• 16 pages

## Cite As

Akanksha Agrawal, Saket Saurabh, and Meirav Zehavi. A Finite Algorithm for the Realizabilty of a Delaunay Triangulation. In 17th International Symposium on Parameterized and Exact Computation (IPEC 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 249, pp. 1:1-1:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)
https://doi.org/10.4230/LIPIcs.IPEC.2022.1

## Abstract

The Delaunay graph of a point set P ⊆ ℝ² is the plane graph with the vertex-set P and the edge-set that contains {p,p'} if there exists a disc whose intersection with P is exactly {p,p'}. Accordingly, a triangulated graph G is Delaunay realizable if there exists a triangulation of the Delaunay graph of some P ⊆ ℝ², called a Delaunay triangulation of P, that is isomorphic to G. The objective of Delaunay Realization is to compute a point set P ⊆ ℝ² that realizes a given graph G (if such a P exists). Known algorithms do not solve Delaunay Realization as they are non-constructive. Obtaining a constructive algorithm for Delaunay Realization was mentioned as an open problem by Hiroshima et al. [Hiroshima et al., 2000]. We design an n^𝒪(n)-time constructive algorithm for Delaunay Realization. In fact, our algorithm outputs sets of points with integer coordinates.

## Subject Classification

##### ACM Subject Classification
• Theory of computation → Parameterized complexity and exact algorithms
##### Keywords
• Delaunay Triangulation
• Delaunay Realization
• Finite Algorithm
• Integer Coordinate Realization

## Metrics

• Access Statistics
• Total Accesses (updated on a weekly basis)
0

## References

1. Karim A. Adiprasito, Arnau Padrol, and Louis Theran. Universality theorems for inscribed polytopes and delaunay triangulations. Discrete & Computational Geometry, 54(2):412-431, 2015.
2. Akanksha Agrawal, Saket Saurabh, and Meirav Zehavi. A finite algorithm for the realizabilty of a delaunay triangulation. arXiv, 2022. URL: https://doi.org/10.48550/ARXIV.2210.03932.
3. Md. Ashraful Alam, Igor Rivin, and Ileana Streinu. Outerplanar graphs and Delaunay triangulations. In Proceedings of the 23rd Annual Canadian Conference on Computational (CCCG), 2011.
4. Sanjeev Arora, Rong Ge, Ravindran Kannan, and Ankur Moitra. Computing a nonnegative matrix factorization - provably. In Proceedings of the 44th Annual ACM Symposium on Theory of Computing, STOC, pages 145-162, 2012.
5. M. Artin. Algebra. Pearson Prentice Hall, 2011.
6. Saugata Basu, Richard Pollack, and Marie-Françoise Roy. Algorithms in Real Algebraic Geometry (Algorithms and Computation in Mathematics). Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006.
7. Mark de Berg, Otfried Cheong, Marc van Kreveld, and Mark Overmars. Computational Geometry: Algorithms and Applications. Springer-Verlag TELOS, 3rd ed. edition, 2008.
8. Norishige Chiba, Kazunori Onoguchi, and Takao Nishizeki. Drawing plane graphs nicely. Acta Inf., 22(2):187-201, 1985.
9. K. L. Clarkson and P. W. Shor. Applications of random sampling in computational geometry, II. Discrete Computational Geometry, 4:387-421, 1989.
10. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to Algorithms (3. ed.). MIT Press, 2009.
11. Hubert de Fraysseix, János Pach, and Richard Pollack. Small sets supporting fáry embeddings of planar graphs. In Proceedings of the 20th Annual ACM Symposium on Theory of Computing (STOC), pages 426-433, 1988.
12. Giuseppe Di Battista and Luca Vismara. Angles of planar triangular graphs. SIAM Journal on Discrete Mathematics, 9(3):349-359, 1996.
13. Reinhard Diestel. Graph Theory, 4th Edition, volume 173 of Graduate texts in mathematics. Springer, 2012.
14. M. Dillencourt. Toughness and Delaunay triangulations. In Proceedings of the Third Annual Symposium on Computational Geometry, SoCG, pages 186-194, 1987.
15. Michael. B. Dillencourt. Realizability of Delaunay triangulations. Information Processing Letters, 33:283-287, 1990.
16. Michael B. Dillencourt and Warren D. Smith. Graph-theoretical conditions for inscribability and Delaunay realizability. Discrete Mathematics, 161(1-3):63-77, 1996.
17. D. Yu. Grigor'ev and N. N. Vorobjov, Jr. Solving systems of polynomial inequalities in subexponential time. Journal of Symbolic Computation, 5:37-64, 1988.
18. Leonidas J. Guibas, Donald E. Knuth, and Micha Sharir. Randomized incremental construction of Delaunay and Voronoi diagrams. Algorithmica, 7(1):381-413, 1992.
19. Tetsuya Hiroshima, Yuichiro Miyamoto, and Kokichi Sugihara. Another proof of polynomial-time recognizability of Delaunay graphs. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 83:627-638, 2000.
20. Craig D Hodgson, Igor Rivin, and Warren D Smith. A characterization of convex hyperbolic polyhedra and of convex polyhedra inscribed in the sphere. Bulletin of the American Mathematical Society, 27:246-251, 1992.
21. Jan Kratochvíl and Jivr'i Matouvsek. Intersection graphs of segments. J. Comb. Theory, Ser. B, 62(2):289-315, 1994.
22. Timothy Lambert. An optimal algorithm for realizing a Delaunay triangulation. Information Processing Letters, 62(5):245-250, 1997.
23. Colin McDiarmid and Tobias Müller. Integer realizations of disk and segment graphs. Journal of Combinatorial Theory, Series B, 103(1):114-143, 2013.
24. Tobias Müller, Erik Jan van Leeuwen, and Jan van Leeuwen. Integer representations of convex polygon intersection graphs. SIAM J. Discrete Math., 27(1):205-231, 2013.
25. Takao Nishizeki, Kazuyuki Miura, and Md. Saidur Rahman. Algorithms for drawing plane graphs. IEICE Transactions, 87-D(2):281-289, 2004.
26. Yasuaki Oishi and Kokichi Sugihara. Topology-oriented divide-and-conquer algorithm for Voronoi diagrams. Graphical Models and Image Processing, 57:303-314, 1995.
27. Atsuyuki Okabe, Barry Boots, and Kokichi Sugihara. Spatial Tessellations: Concepts and Applications of Voronoi Diagrams. John Wiley & Sons, Inc., 1992.
28. János Pach and Pankaj K. Agarwal. Combinatorial Geometry. Wiley-Interscience series in discrete mathematics and optimization. Wiley, New York, 1995.
29. James Renegar. On the computational complexity and geometry of the first-order theory of the reals. Journal of Symbolic Computation, 13:255-352, 1992.
30. Igor Rivin. Euclidean structures on simplicial surfaces and hyperbolic volume. Annals of Mathematics, 139:553-580, 1994.
31. Kokichi Sugihara. Simpler proof of a realizability theorem on Delaunay triangulations. Information Processing Letters, 50:173-176, 1994.
32. Kokichi Sugihara and Masao Iri. Construction of the Voronoi diagram for one million generators in single-precision arithmetic. Proceedings of the IEEE, 80:1471-1484, 1992.
33. Kokichi Sugihara and Masao Iri. A robust topology-oriented incremental algorithm for Voronoi diagrams. International Journal of Computational Geometry & Applications, 4(02):179-228, 1994.
34. William Thomas Tutte. How to draw a graph. Proceedings of the London Mathematical Society, 3(1):743-767, 1963.
35. Hassler Whitney. Congruent Graphs and the Connectivity of Graphs, pages 61-79. Birkhäuser Boston, Boston, MA, 1992.
X

Feedback for Dagstuhl Publishing