PACE Solver Description: Mount Doom - An Exact Solver for Directed Feedback Vertex Set

Authors Sebastian Angrick, Ben Bals, Katrin Casel , Sarel Cohen , Tobias Friedrich , Niko Hastrich, Theresa Hradilak, Davis Issac , Otto Kißig , Jonas Schmidt, Leo Wendt



PDF
Thumbnail PDF

File

LIPIcs.IPEC.2022.28.pdf
  • Filesize: 474 kB
  • 4 pages

Document Identifiers

Author Details

Sebastian Angrick
  • Hasso Plattner Institut, Universität Potsdam, Germany
Ben Bals
  • Hasso Plattner Institut, Universität Potsdam, Germany
Katrin Casel
  • Hasso Plattner Institut, Universität Potsdam, Germany
Sarel Cohen
  • The Academic College of Tel Aviv-Yaffo, Israel
Tobias Friedrich
  • Hasso Plattner Institut, Universität Potsdam, Germany
Niko Hastrich
  • Hasso Plattner Institut, Universität Potsdam, Germany
Theresa Hradilak
  • Hasso Plattner Institut, Universität Potsdam, Germany
Davis Issac
  • Hasso Plattner Institut, Universität Potsdam, Germany
Otto Kißig
  • Hasso Plattner Institut, Universität Potsdam, Germany
Jonas Schmidt
  • Hasso Plattner Institut, Universität Potsdam, Germany
Leo Wendt
  • Hasso Plattner Institut, Universität Potsdam, Germany

Cite AsGet BibTex

Sebastian Angrick, Ben Bals, Katrin Casel, Sarel Cohen, Tobias Friedrich, Niko Hastrich, Theresa Hradilak, Davis Issac, Otto Kißig, Jonas Schmidt, and Leo Wendt. PACE Solver Description: Mount Doom - An Exact Solver for Directed Feedback Vertex Set. In 17th International Symposium on Parameterized and Exact Computation (IPEC 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 249, pp. 28:1-28:4, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)
https://doi.org/10.4230/LIPIcs.IPEC.2022.28

Abstract

In this document we describe the techniques we used and implemented for our submission to the Parameterized Algorithms and Computational Experiments Challenge (PACE) 2022. The given problem is Directed Feedback Vertex Set (DFVS), where one is given a directed graph G = (V,E) and wants to find a minimum S ⊆ V such that G-S is acyclic. We approach this problem by first exhaustively applying a set of reduction rules. In order to find a minimum DFVS on the remaining instance, we create and solve a series of Vertex Cover instances.

Subject Classification

ACM Subject Classification
  • Mathematics of computing → Graph algorithms
Keywords
  • directed feedback vertex set
  • vertex cover
  • reduction rules

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Shaowei Cai, Kaile Su, Chuan Luo, and Abdul Sattar. NuMVC: An Efficient Local Search Algorithm for Minimum Vertex Cover. Journal of Artificial Intelligence Research, 46:687-716, 2013. Google Scholar
  2. Reinhard Diestel. Graph Theory 3rd ed. Graduate Texts in Mathematics, 173, 2005. Google Scholar
  3. Fedor V. Fomin, Fabrizio Grandoni, and Dieter Kratsch. A Measure & Conquer Approach for the Analysis of Exact Algorithms. Journal of the ACM, 56(5):25:1-25:32, 2009. Google Scholar
  4. Demian Hespe, Sebastian Lamm, Christian Schulz, and Darren Strash. WeGotYouCovered: The Winning Solver from the PACE 2019 Challenge, Vertex Cover Track. In Proceedings of the SIAM Workshop on Combinatorial Scientific Computing (CSC), pages 1-11, 2020. Google Scholar
  5. Mile Lemaic. Markov-Chain-Based Heuristics for the Feedback Vertex Set Problem for Digraphs. PhD thesis, Universität zu Köln, 2008. Google Scholar
  6. Rick Plachetta and Alexander van der Grinten. SAT-and-Reduce for Vertex Cover: Accelerating Branch-and-Reduce by SAT Solving. In Proceedings of the Symposium on Algorithm Engineering and Experiments (ALENEX), pages 169-180, 2021. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail