LIPIcs.IPEC.2023.10.pdf
- Filesize: 1.04 MB
- 22 pages
Given an undirected graph G and a multiset of k terminal pairs 𝒳, the Vertex-Disjoint Paths (VDP) and Edge-Disjoint Paths (EDP) problems ask whether G has k pairwise internally vertex-disjoint paths and k pairwise edge-disjoint paths, respectively, connecting every terminal pair in 𝒳. In this paper, we study the kernelization complexity of VDP and EDP on subclasses of chordal graphs. For VDP, we design a 4k vertex kernel on split graphs and an 𝒪(k²) vertex kernel on well-partitioned chordal graphs. We also show that the problem becomes polynomial-time solvable on threshold graphs. For EDP, we first prove that the problem is NP-complete on complete graphs. Then, we design an 𝒪(k^{2.75}) vertex kernel for EDP on split graphs, and improve it to a 7k+1 vertex kernel on threshold graphs. Lastly, we provide an 𝒪(k²) vertex kernel for EDP on block graphs and a 2k+1 vertex kernel for clique paths. Our contributions improve upon several results in the literature, as well as resolve an open question by Heggernes et al. [Theory Comput. Syst., 2015].
Feedback for Dagstuhl Publishing