Kernels for the Disjoint Paths Problem on Subclasses of Chordal Graphs

Authors Juhi Chaudhary , Harmender Gahlawat , Michal Włodarczyk , Meirav Zehavi



PDF
Thumbnail PDF

File

LIPIcs.IPEC.2023.10.pdf
  • Filesize: 1.04 MB
  • 22 pages

Document Identifiers

Author Details

Juhi Chaudhary
  • Ben-Gurion University of the Negev, Beersheba, Israel
Harmender Gahlawat
  • Ben-Gurion University of the Negev, Beersheba, Israel
Michal Włodarczyk
  • University of Warsaw, Poland
Meirav Zehavi
  • Ben-Gurion University of the Negev, Beersheba, Israel

Cite AsGet BibTex

Juhi Chaudhary, Harmender Gahlawat, Michal Włodarczyk, and Meirav Zehavi. Kernels for the Disjoint Paths Problem on Subclasses of Chordal Graphs. In 18th International Symposium on Parameterized and Exact Computation (IPEC 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 285, pp. 10:1-10:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)
https://doi.org/10.4230/LIPIcs.IPEC.2023.10

Abstract

Given an undirected graph G and a multiset of k terminal pairs 𝒳, the Vertex-Disjoint Paths (VDP) and Edge-Disjoint Paths (EDP) problems ask whether G has k pairwise internally vertex-disjoint paths and k pairwise edge-disjoint paths, respectively, connecting every terminal pair in 𝒳. In this paper, we study the kernelization complexity of VDP and EDP on subclasses of chordal graphs. For VDP, we design a 4k vertex kernel on split graphs and an 𝒪(k²) vertex kernel on well-partitioned chordal graphs. We also show that the problem becomes polynomial-time solvable on threshold graphs. For EDP, we first prove that the problem is NP-complete on complete graphs. Then, we design an 𝒪(k^{2.75}) vertex kernel for EDP on split graphs, and improve it to a 7k+1 vertex kernel on threshold graphs. Lastly, we provide an 𝒪(k²) vertex kernel for EDP on block graphs and a 2k+1 vertex kernel for clique paths. Our contributions improve upon several results in the literature, as well as resolve an open question by Heggernes et al. [Theory Comput. Syst., 2015].

Subject Classification

ACM Subject Classification
  • Theory of computation → Parameterized complexity and exact algorithms
  • Mathematics of computing → Graph algorithms
Keywords
  • Kernelization
  • Parameterized Complexity
  • Vertex-Disjoint Paths Problem
  • Edge-Disjoint Paths Problem

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. I. Adler, S. G. Kolliopoulos, P. K. Krause, D. Lokshtanov, S. Saurabh, and D. M. Thilikos. Irrelevant vertices for the planar disjoint paths problem. Journal of Combinatorial Theory, Series B, 122:815-843, 2017. Google Scholar
  2. J. Ahn, L. Jaffke, O. J. Kwon, and P. T. Lima. Well-partitioned chordal graphs. Discrete Mathematics, 345(10):112985, 2022. Google Scholar
  3. Claude Berge. Two theorems in graph theory. Proceedings of the National Academy of Sciences, 43(9):842-844, 1957. Google Scholar
  4. H. L. Bodlaender, S. Thomassé, and A. Yeo. Kernel bounds for disjoint cycles and disjoint paths. Theoretical Computer Science, 412(35):4570-4578, 2011. Google Scholar
  5. J. Chaudhary, H. Gahlawat, M. Włodarczyk, and M. Zehavi. Kernels for the disjoint paths problem on subclasses of chordal graphs. arXiv:2309.16892, 2023. Google Scholar
  6. C. Chekuri, S. Khanna, and F. B. Shepherd. An 𝒪(√n) approximation and integrality gap for disjoint paths and unsplittable flow. Theory of Computing, 2(7):137-146, 2006. Google Scholar
  7. J. Chuzhoy and D. H. K. Kim. On approximating node-disjoint paths in grids. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM 2015, pages 187-211. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2015. Google Scholar
  8. J. Chuzhoy, D. H. K. Kim, and S. Li. Improved approximation for node-disjoint paths in planar graphs. In Proceedings of the 48th annual ACM symposium on Theory of Computing, STOC 2016, pages 556-569, 2016. Google Scholar
  9. J. Chuzhoy, D. H. K. Kim, and R. Nimavat. Improved approximation for node-disjoint paths in grids with sources on the boundary. In Proceedings of the 45th International Colloquium on Automata, Languages, and Programming, ICALP 2018, pages 38:1-38:14. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018. Google Scholar
  10. J. Chuzhoy, D. H. K. Kim, and R. Nimavat. Almost polynomial hardness of node-disjoint paths in grids. Theory of Computing, 17(6):1-57, 2021. URL: https://doi.org/10.4086/toc.2021.v017a006.
  11. J. Chuzhoy, D. H. K. Kim, and R. Nimavat. New hardness results for routing on disjoint paths. SIAM Journal on Computing, 51(2):189-237, 2022. Google Scholar
  12. M. Cygan, F. V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk, M. Pilipczuk, and S. Saurabh. Parameterized Algorithms. Springer Publishing Company, Incorporated, 1st edition, 2015. Google Scholar
  13. R. Diestel. Graph theory 3rd ed. Graduate texts in mathematics, 173(33):12, 2005. Google Scholar
  14. Z. Dvořák, D. Král', and R. Thomas. Coloring triangle-free graphs on surfaces. In Proceedings of the 20th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 120-129. SIAM, 2009. Google Scholar
  15. A. Ene, M. Mnich, M. Pilipczuk, and A. Risteski. On routing disjoint paths in bounded treewidth graphs. In Proceedings of the 15th Scandinavian Symposium and Workshops on Algorithm Theory, SWAT 2016, pages 1-15. Schloss Dagstuhl, 2016. Google Scholar
  16. S. Even, A. Itai, and A. Shamir. On the complexity of timetable and multicommodity flow problems. SIAM Journal on Computing, 5(4):691-703, 1976. Google Scholar
  17. Michael R Fellows. The lost continent of polynomial time: Preprocessing and kernelization. In International Workshop on Parameterized and Exact Computation, pages 276-277. Springer, 2006. Google Scholar
  18. K. Fleszar, M. Mnich, and J. Spoerhase. New algorithms for maximum disjoint paths based on tree-likeness. In Proceedings of the European Symposium on Algorithms, ESA 2016, pages 1-17. Schloss Dagstuhl, 2016. Google Scholar
  19. F. V. Fomin, D. Lokshtanov, S. Saurabh, and M. Zehavi. Kernelization: Theory of Parameterized Preprocessing. Cambridge University Press, 2019. URL: https://doi.org/10.1017/9781107415157.
  20. A. Frank. Packing paths, circuits, and cuts-a survey. Paths, flows, and VLSI-layout, 49:100, 1990. Google Scholar
  21. R. Ganian and S. Ordyniak. The power of cut-based parameters for computing edge-disjoint paths. Algorithmica, 83:726-752, 2021. Google Scholar
  22. N. Garg, V. V. Vazirani, and M. Yannakakis. Primal-dual approximation algorithms for integral flow and multicut in trees. Algorithmica, 18(1):3-20, 1997. Google Scholar
  23. P. A. Golovach, F. Panolan, A. Rai, and S. Saurabh. New algorithms for maximum disjoint paths based on tree-likeness. In Proceedings of the European Symposium on Algorithms, ESA 2016, pages 1-17. Schloss Dagstuhl, 2016. Google Scholar
  24. P. A. Golovach, F. Panolan, A. Rai, and S. Saurabh. Parameterized complexity of set-restricted disjoint paths on chordal graphs. In Proceedings of the 17th International Computer Science Symposium in Russia, CSR 2022, Virtual Event, June 29-July 1, 2022, Proceedings, pages 152-169. Springer, 2022. Google Scholar
  25. F. Gurski and E. Wanke. Vertex disjoint paths on clique-width bounded graphs. Theoretical Computer Science, 359(1-3):188-199, 2006. Google Scholar
  26. P. L. Hammer and B. Simeone. The splittance of a graph. Combinatorica, 1:275-284, 1981. Google Scholar
  27. P. Heggernes, P. V. Hof, E. J. V. Leeuwen, and R. Saei. Finding disjoint paths in split graphs. Theory of Computing Systems, 57(1):140-159, 2015. Google Scholar
  28. J. E. Hopcroft and R. M. Karp. An n^5/2 algorithm for maximum matching in bipartite graphs. SIAM Journal on Computing, 2(4):225-231, 1973. Google Scholar
  29. F. Kammer, T. Tholey, O. J. Kwon, and P. T. Lima. The k-disjoint paths problem on chordal graphs. In Proceedings of the 35th International Workshop on Graph-Theoretic Concepts in Computer Science, WG 2009, pages 190-201. Springer, Berlin, 2009. URL: https://doi.org/10.1007/978-3-642-11409-0_17.
  30. R. M. Karp. On the computational complexity of combinatorial problems. Networks, 5:45-68, 1975. Google Scholar
  31. K. Kawarabayashi, Y. Kobayashi, and S. Kreutzer. An excluded half-integral grid theorem for digraphs and the directed disjoint paths problem. In Proceedings of the 46th Annual ACM Symposium on Theory of Computing, STOC 2014, pages 70-78, New York, NY, USA, 2014. Association for Computing Machinery. URL: https://doi.org/10.1145/2591796.2591876.
  32. K. Kawarabayashi, Y. Kobayashi, and B. Reed. The disjoint paths problem in quadratic time. Journal of Combinatorial Theory, Series B, 102(2):424-435, 2012. Google Scholar
  33. Y. Kobayashi and K. Kawarabayashi. Algorithms for finding an induced cycle in planar graphs and bounded genus graphs. In Proceedings of the 20th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1146-1155. SIAM, 2009. Google Scholar
  34. S. G. Kolliopoulos and C. Stein. Approximating disjoint-path problems using packing integer programs. Mathematical Programming, 99(1):63-87, 2004. Google Scholar
  35. M. Kramer and J. V. Leeuwen. The complexity of wirerouting and finding minimum area layouts for arbitrary vlsi circuits. Advances in Computing Research, 2:129-146, 1984. Google Scholar
  36. D. Lokshtanov, P. Misra, M. Pilipczuk, S. Saurabh, and M. Zehavi. An exponential time parameterized algorithm for planar disjoint paths. In Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing, STOC 2020, pages 1307-1316, New York, NY, USA, 2020. Association for Computing Machinery. URL: https://doi.org/10.1145/3357713.3384250.
  37. D. Lokshtanov, S. Saurabh, and M. Zehavi. Efficient graph minors theory and parameterized algorithms for (planar) disjoint paths. In Treewidth, Kernels, and Algorithms, pages 112-128. Springer, 2020. Google Scholar
  38. S. Natarajan and A. P. Sprague. Disjoint paths in circular arc graphs. Nordic Journal of Computing, 3:256-270, 1996. Google Scholar
  39. T. Nishizeki, J. Vygen, and X. Zhou. The edge-disjoint paths problem is NP-complete for series-parallel graphs. Discrete Applied Mathematics, 115(1-3):177-186, 2001. Google Scholar
  40. B. Reed. Rooted routing in the plane. Discrete Applied Mathematics, 57(2-3):213-227, 1995. Google Scholar
  41. Bruce A Reed. Tree width and tangles: A new connectivity measure and some applications. Surveys in combinatorics, pages 87-162, 1997. Google Scholar
  42. N. Robertson and P. D. Seymour. Graph minors XIII. The disjoint paths problem. Journal of Combinatorial Theory, Series B, 63(1):65-110, 1995. Google Scholar
  43. N. Robertson and P. D. Seymour. Graph minors XXII. Irrelevant vertices in linkage problems. Journal of Combinatorial Theory, Series B, 102(2):530-563, 2012. Google Scholar
  44. A. Schrijver. Combinatorial optimization: polyhedra and efficiency, volume 24. Springer, 2003. Google Scholar
  45. A. Srinivas and E. Modiano. Finding minimum energy disjoint paths in wireless ad-hoc networks. Wireless Networks, 11:401-417, 2005. Google Scholar
  46. M. Włodarczyk and M. Zehavi. Planar disjoint paths, treewidth, and kernels. In Proceedings of the 64th IEEE Symposium on Foundations of Computer Science (FOCS) 2023, 2023. Google Scholar
  47. Y. Yang, Y. R. Shrestha, W. Li, and J. Guo. On the kernelization of split graph problems. Theoretical Computer Science, 734:72-82, 2018. Google Scholar
  48. X. Zhou, S. Tamura, and T. Nishizeki. Finding edge-disjoint paths in partial k-trees. Algorithmica, 26(1):3-30, 2000. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail