An Improved Kernelization Algorithm for Trivially Perfect Editing

Authors Maël Dumas, Anthony Perez



PDF
Thumbnail PDF

File

LIPIcs.IPEC.2023.15.pdf
  • Filesize: 0.89 MB
  • 17 pages

Document Identifiers

Author Details

Maël Dumas
  • Univ. Orléans, INSA Centre Val de Loire, LIFO EA 4022, F-45067 Orléans, France
Anthony Perez
  • Univ. Orléans, INSA Centre Val de Loire, LIFO EA 4022, F-45067 Orléans, France

Cite As Get BibTex

Maël Dumas and Anthony Perez. An Improved Kernelization Algorithm for Trivially Perfect Editing. In 18th International Symposium on Parameterized and Exact Computation (IPEC 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 285, pp. 15:1-15:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023) https://doi.org/10.4230/LIPIcs.IPEC.2023.15

Abstract

In the Trivially Perfect Editing problem one is given an undirected graph G = (V,E) and an integer k and seeks to add or delete at most k edges in G to obtain a trivially perfect graph. In a recent work, Dumas et al. [Dumas et al., 2023] proved that this problem admits a kernel with O(k³) vertices. This result heavily relies on the fact that the size of trivially perfect modules can be bounded by O(k²) as shown by Drange and Pilipczuk [Drange and Pilipczuk, 2018]. To obtain their cubic vertex-kernel, Dumas et al. [Dumas et al., 2023] then showed that a more intricate structure, so-called comb, can be reduced to O(k²) vertices. In this work we show that the bound can be improved to O(k) for both aforementioned structures and thus obtain a kernel with O(k²) vertices. Our approach relies on the straightforward yet powerful observation that any large enough structure contains unaffected vertices whose neighborhood remains unchanged by an editing of size k, implying strong structural properties.

Subject Classification

ACM Subject Classification
  • Theory of computation → Parameterized complexity and exact algorithms
Keywords
  • Parameterized complexity
  • kernelization algorithms
  • graph modification
  • trivially perfect graphs

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Gabriel Bathie, Nicolas Bousquet, Yixin Cao, Yuping Ke, and Théo Pierron. (Sub) linear kernels for edge modification problems toward structured graph classes. Algorithmica, 84(11):3338-3364, 2022. URL: https://doi.org/10.1007/s00453-022-00969-1.
  2. Stéphane Bessy, Christophe Paul, and Anthony Perez. Polynomial kernels for 3-leaf power graph modification problems. Discrete Applied Mathematics, 158(16):1732-1744, 2010. URL: https://doi.org/10.1016/j.dam.2010.07.002.
  3. Stéphane Bessy and Anthony Perez. Polynomial kernels for proper interval completion and related problems. Information and Computation, 231:89-108, 2013. URL: https://doi.org/10.1016/j.ic.2013.08.006.
  4. Ulrik Brandes, Michael Hamann, Luise Häuser, and Dorothea Wagner. Skeleton-based clustering by quasi-threshold editing. In Algorithms for Big Data: DFG Priority Program 1736, pages 134-151. Springer, 2023. URL: https://doi.org/10.1007/978-3-031-21534-6_7.
  5. Ulrik Brandes, Michael Hamann, Ben Strasser, and Dorothea Wagner. Fast quasi-threshold editing. In Proceedings of the 23rd European Symposium on Algorithms, ESA, pages 251-262, 2015. URL: https://doi.org/10.1007/978-3-662-48350-3_22.
  6. Pablo Burzyn, Flavia Bonomo, and Guillermo Durán. NP-completeness results for edge modification problems. Discrete Applied Mathematics, 154(13):1824-1844, 2006. URL: https://doi.org/10.1016/j.dam.2006.03.031.
  7. Leizhen Cai. Fixed-parameter tractability of graph modification problems for hereditary properties. Information Processing Letters, 58(4):171-176, 1996. URL: https://doi.org/10.1016/0020-0190(96)00050-6.
  8. Leizhen Cai and Yufei Cai. Incompressibility of H-free edge modification problems. Algorithmica, 71(3):731-757, 2015. URL: https://doi.org/10.1007/s00453-014-9937-x.
  9. Christophe Crespelle, Pål Grønås Drange, Fedor V. Fomin, and Petr Golovach. A survey of parameterized algorithms and the complexity of edge modification. Computer Science Review, 48:100556, 2023. URL: https://doi.org/10.1016/j.cosrev.2023.100556.
  10. Christophe Crespelle, Benjamin Gras, and Anthony Perez. Completion to chordal distance-hereditary graphs: a quartic vertex-kernel. In Proceedings of the 47th International Workshop on Graph-Theoretic Concepts in Computer Science, WG, pages 156-168, 2021. URL: https://doi.org/10.1007/978-3-030-86838-3_12.
  11. Christophe Crespelle, Rémi Pellerin, and Stéphan Thomassé. A quasi-quadratic vertex kernel for cograph edge editing, 2022. URL: https://arxiv.org/abs/2212.14814.
  12. Pål Grønås Drange, Markus Fanebust Dregi, Daniel Lokshtanov, and Blair D. Sullivan. On the threshold of intractability. Journal of Computer and System Sciences, 124:1-25, 2022. URL: https://doi.org/10.1016/j.jcss.2021.09.003.
  13. Pål Grønås Drange, Fedor V. Fomin, Michał Pilipczuk, and Yngve Villanger. Exploring the subexponential complexity of completion problems. ACM Transactions on Computation Theory, 7(4):1-38, 2015. URL: https://doi.org/10.1145/2799640.
  14. Pål Grønås Drange and Michał Pilipczuk. A polynomial kernel for trivially perfect editing. Algorithmica, 80(12):3481-3524, 2018. URL: https://doi.org/10.1007/s00453-017-0401-6.
  15. Maël Dumas, Anthony Perez, and Ioan Todinca. Polynomial kernels for strictly chordal edge modification problems. In Proceedings of the 16th International Symposium on Parameterized and Exact Computation, IPEC, pages 17:1-17:16, 2021. URL: https://doi.org/10.4230/LIPIcs.IPEC.2021.17.
  16. Maël Dumas, Anthony Perez, and Ioan Todinca. A cubic vertex-kernel for trivially perfect editing. Algorithmica, 85(4):1091-1110, 2023. URL: https://doi.org/10.1007/s00453-022-01070-3.
  17. Jack Edmonds. Paths, trees, and flowers. Canadian Journal of mathematics, 17:449-467, 1965. URL: https://doi.org/10.4153/CJM-1965-045-4.
  18. Fedor V. Fomin, Daniel Lokshtanov, Neeldhara Misra, and Saket Saurabh. Planar F-deletion: Approximation, kernelization and optimal FPT algorithms. In Proceedings of the 53rd Annual IEEE Symposium on Foundations of Computer Science, FOCS, pages 470-479, 2012. URL: https://doi.org/10.1109/FOCS.2012.62.
  19. Fedor V. Fomin, Daniel Lokshtanov, Saket Saurabh, and Meirav Zehavi. Kernelization: theory of parameterized preprocessing. Cambridge University Press, 2019. Google Scholar
  20. Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman, 1979. Google Scholar
  21. Martin Charles Golumbic. Trivially perfect graphs. Discrete Mathematics, 24(1):105-107, 1978. URL: https://doi.org/10.1016/0012-365X(78)90178-4.
  22. Lars Gottesbüren, Michael Hamann, Philipp Schoch, Ben Strasser, Dorothea Wagner, and Sven Zühlsdorf. Engineering exact quasi-threshold editing. In Proceedings of the 18th International Symposium on Experimental Algorithms, SEA, pages 10:1-10:14, 2020. URL: https://doi.org/10.4230/LIPIcs.SEA.2020.10.
  23. Sylvain Guillemot, Frédéric Havet, Christophe Paul, and Anthony Perez. On the (non-)existence of polynomial kernels for P_l-free edge modification problems. Algorithmica, 65(4):900-926, 2013. URL: https://doi.org/10.1007/s00453-012-9619-5.
  24. Jiong Guo. Problem kernels for NP-complete edge deletion problems: Split and related graphs. In Proceedings of the 18th International Symposium on Algorithms and Computation, ISAAC, pages 915-926, 2007. URL: https://doi.org/10.1007/978-3-540-77120-3_79.
  25. Haim Kaplan, Ron Shamir, and Robert E. Tarjan. Tractability of parameterized completion problems on chordal, strongly chordal, and proper interval graphs. SIAM Journal on Computing, 28(5):1906-1922, 1999. URL: https://doi.org/10.1137/S0097539796303044.
  26. Richard M. Karp. Reducibility among combinatorial problems. In Complexity of Computer Computations, pages 85-103. Springer, 1972. URL: https://doi.org/10.1007/978-1-4684-2001-2_9.
  27. Christian Komusiewicz and Johannes Uhlmann. A cubic-vertex kernel for flip consensus tree. Algorithmica, 68(1):81-108, 2014. URL: https://doi.org/10.1007/s00453-012-9663-1.
  28. Stefan Kratsch and Magnus Wahlström. Two edge modification problems without polynomial kernels. Discrete Optimization, 10(3):193-199, 2013. URL: https://doi.org/10.1016/j.disopt.2013.02.001.
  29. Yunlong Liu, Jianxin Wang, Jie You, Jianer Chen, and Yixin Cao. Edge deletion problems: Branching facilitated by modular decomposition. Theoretical Computer Science, 573:63-70, 2015. URL: https://doi.org/10.1016/j.tcs.2015.01.049.
  30. Dániel Marx and R.B. Sandeep. Incompressibility of H-free edge modification problems: Towards a dichotomy. Journal of Computer and System Sciences, 125:25-58, 2022. URL: https://doi.org/10.1016/j.jcss.2021.11.001.
  31. James Nastos and Yong Gao. Familial groups in social networks. Social Networks, 35(3):439-450, 2013. URL: https://doi.org/10.1016/j.socnet.2013.05.001.
  32. Assaf Natanzon, Ron Shamir, and Roded Sharan. A polynomial approximation algorithm for the minimum fill-in problem. SIAM Journal on Computing, 30(4):1067-1079, 2000. URL: https://doi.org/10.1137/S0097539798336073.
  33. Jaroslav Nešetřil and Patrice Ossona De Mendez. On low tree-depth decompositions. Graphs and combinatorics, 31(6):1941-1963, 2015. URL: https://doi.org/10.1007/s00373-015-1569-7.
  34. Roded Sharan. Graph modification problems and their applications to genomic research. PhD thesis, Tel-Aviv University, 2002. Google Scholar
  35. Marc Tedder, Derek Corneil, Michel Habib, and Christophe Paul. Simpler linear-time modular decomposition via recursive factorizing permutations. In : Proceedings of the 35th International Colloquium on Automata, Languages, and Programming, ICALP, pages 634-645, 2008. URL: https://doi.org/10.1007/978-3-540-70575-8_52.
  36. Jing-Ho Yan, Jer-Jeong Chen, and Gerard J. Chang. Quasi-threshold graphs. Discrete applied mathematics, 69(3):247-255, 1996. URL: https://doi.org/10.1016/0166-218X(96)00094-7.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail