PACE Solver Description: Touiouidth

Authors Gaétan Berthe , Yoann Coudert-Osmont, Alexander Dobler , Laure Morelle , Amadeus Reinald , Mathis Rocton



PDF
Thumbnail PDF

File

LIPIcs.IPEC.2023.38.pdf
  • Filesize: 0.57 MB
  • 4 pages

Document Identifiers

Author Details

Gaétan Berthe
  • LIRMM, CNRS, Université de Montpellier, France
Yoann Coudert-Osmont
  • Université de Lorraine, CNRS, Inria, LORIA, France
Alexander Dobler
  • Algorithms and Complexity Group, TU Wien, Austria
Laure Morelle
  • LIRMM, CNRS, Université de Montpellier, France
Amadeus Reinald
  • LIRMM, CNRS, Université de Montpellier, France
Mathis Rocton
  • Algorithms and Complexity Group, TU Wien, Austria

Cite As Get BibTex

Gaétan Berthe, Yoann Coudert-Osmont, Alexander Dobler, Laure Morelle, Amadeus Reinald, and Mathis Rocton. PACE Solver Description: Touiouidth. In 18th International Symposium on Parameterized and Exact Computation (IPEC 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 285, pp. 38:1-38:4, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023) https://doi.org/10.4230/LIPIcs.IPEC.2023.38

Abstract

We describe Touiouidth, a twin-width solver for the exact-track of the 2023 PACE Challenge: Twin Width. Our solver is based on a simple branch and bound algorithm with search space reductions and is implemented in C++.

Subject Classification

ACM Subject Classification
  • Theory of computation → Graph algorithms analysis
  • Theory of computation → Parameterized complexity and exact algorithms
Keywords
  • Twinwidth
  • Pace Challenge

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Pierre Bergé, Édouard Bonnet, and Hugues Déprés. Deciding Twin-Width at Most 4 Is NP-Complete. In Mikołaj Bojańczyk, Emanuela Merelli, and David P. Woodruff, editors, Proc. International Colloquium on Automata, Languages, and Programming (ICALP 2022), volume 229 of Leibniz International Proceedings in Informatics (LIPIcs), pages 18:1-18:20, Dagstuhl, Germany, 2022. Schloss Dagstuhl - Leibniz-Zentrum für Informatik. URL: https://doi.org/10.4230/LIPIcs.ICALP.2022.18.
  2. Édouard Bonnet, Eun Jung Kim, Amadeus Reinald, Stéphan Thomassé, and Rémi Watrigant. Twin-width and polynomial kernels. Algorithmica, 84(11):3300-3337, 2022. Google Scholar
  3. Édouard Bonnet, Eun Jung Kim, Stéphan Thomassé, and Rémi Watrigant. Twin-width I: tractable FO model checking. J. ACM, 69(1):3:1-3:46, 2022. URL: https://doi.org/10.1145/3486655.
  4. André Schidler and Stefan Szeider. A SAT approach to twin-width. In Cynthia A. Phillips and Bettina Speckmann, editors, Proc. Symposium on Algorithm Engineering and Experiments (ALENEX 2022), pages 67-77. SIAM, 2022. URL: https://doi.org/10.1137/1.9781611977042.6.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail