A Polynomial Time Algorithm for Steiner Tree When Terminals Avoid a Rooted K₄-Minor

Authors Carla Groenland , Jesper Nederlof , Tomohiro Koana



PDF
Thumbnail PDF

File

LIPIcs.IPEC.2024.12.pdf
  • Filesize: 0.83 MB
  • 17 pages

Document Identifiers

Author Details

Carla Groenland
  • Delft Institute of Applied Mathematics, The Netherlands
Jesper Nederlof
  • Department of Information and Computing Sciences, Utrecht University, The Netherlands
Tomohiro Koana
  • Department of Information and Computing Sciences, Utrecht University, The Netherlands

Cite As Get BibTex

Carla Groenland, Jesper Nederlof, and Tomohiro Koana. A Polynomial Time Algorithm for Steiner Tree When Terminals Avoid a Rooted K₄-Minor. In 19th International Symposium on Parameterized and Exact Computation (IPEC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 321, pp. 12:1-12:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024) https://doi.org/10.4230/LIPIcs.IPEC.2024.12

Abstract

We study a special case of the Steiner Tree problem in which the input graph does not have a minor model of a complete graph on 4 vertices for which all branch sets contain a terminal. We show that this problem can be solved in O(n⁴) time, where n denotes the number of vertices in the input graph. This generalizes a seminal paper by Erickson et al. [Math. Oper. Res., 1987] that solves Steiner tree on planar graphs with all terminals on one face in polynomial time.

Subject Classification

ACM Subject Classification
  • Mathematics of computing → Graph algorithms
Keywords
  • Steiner tree
  • rooted minor

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Brenda S. Baker. Approximation algorithms for NP-complete problems on planar graphs. J. ACM, 41(1):153-180, 1994. URL: https://doi.org/10.1145/174644.174650.
  2. Marshall W. Bern and Daniel Bienstock. Polynomially solvable special cases of the Steiner problem in planar networks. Ann. Oper. Res., 33(6):403-418, 1991. URL: https://doi.org/10.1007/BF02071979.
  3. Thomas Böhme, Jochen Harant, Matthias Kriesell, Samuel Mohr, and Jens M. Schmidt. Rooted minors and locally spanning subgraphs. J. Graph Theory, 105(2):209-229, 2024. URL: https://doi.org/10.1002/JGT.23012.
  4. Glencora Borradaile, Philip N. Klein, and Claire Mathieu. An O(n log n) approximation scheme for Steiner tree in planar graphs. ACM Trans. Algorithms, 5(3):31:1-31:31, 2009. URL: https://doi.org/10.1145/1541885.1541892.
  5. Li Chen, Rasmus Kyng, Yang P. Liu, Simon Meierhans, and Maximilian Probst Gutenberg. Almost-linear time algorithms for incremental graphs: Cycle detection, sccs, s-t shortest path, and minimum-cost flow. In Proceedings of the 56th Annual ACM Symposium on Theory of Computing, STOC, pages 1165-1173. ACM, 2024. URL: https://doi.org/10.1145/3618260.3649745.
  6. Erik D. Demaine, Fedor V. Fomin, Mohammad Taghi Hajiaghayi, and Dimitrios M. Thilikos. Subexponential parameterized algorithms on bounded-genus graphs and H-minor-free graphs. J. ACM, 52(6):866-893, 2005. URL: https://doi.org/10.1145/1101821.1101823.
  7. R. Diestel. Graph Theory: 5th edition. Springer Graduate Texts in Mathematics. Springer Berlin, Heidelberg, 2017. URL: https://books.google.nl/books?id=zIxRDwAAQBAJ.
  8. Stuart E. Dreyfus and Robert A. Wagner. The Steiner problem in graphs. Networks, 1(3):195-207, 1971. URL: https://doi.org/10.1002/NET.3230010302.
  9. Ranel E. Erickson, Clyde L. Monma, and Arthur F. Veinott Jr. Send-and-split method for minimum-concave-cost network flows. Math. Oper. Res., 12(4):634-664, 1987. URL: https://doi.org/10.1287/MOOR.12.4.634.
  10. Ruy Fabila-Monroy and David R. Wood. Rooted K₄-Minors. Electronic Journal of Combinatorics, 20(2):#P64, 2013. URL: https://doi.org/10.37236/3476.
  11. Lester Randolph Ford and Delbert R Fulkerson. Maximal flow through a network. Canadian journal of Mathematics, 8:399-404, 1956. Google Scholar
  12. Jędrzej Hodor, Hoang La, Piotr Micek, and Clément Rambaud. Quickly excluding an apex-forest, 2024. Google Scholar
  13. Ken ichi Kawarabayashi. Rooted minor problems in highly connected graphs. Discrete Mathematics, 287(1):121-123, 2004. URL: https://doi.org/10.1016/j.disc.2004.07.007.
  14. Leif K Jørgensen and Ken-ichi Kawarabayashi. Extremal results for rooted minor problems. Journal of Graph Theory, 55(3):191-207, 2007. URL: https://doi.org/10.1002/jgt.20232.
  15. Ken-ichi Kawarabayashi, Yusuke Kobayashi, and Bruce A. Reed. The disjoint paths problem in quadratic time. J. Comb. Theory B, 102(2):424-435, 2012. URL: https://doi.org/10.1016/J.JCTB.2011.07.004.
  16. Tuukka Korhonen, Michał Pilipczuk, and Giannos Stamoulis. Minor containment and disjoint paths in almost-linear time. arXiv preprint arXiv:2404.03958, 2024. Google Scholar
  17. Dániel Marx, Marcin Pilipczuk, and Michal Pilipczuk. On subexponential parameterized algorithms for Steiner tree and directed subset TSP on planar graphs. In Proceedings of the 59th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2018, pages 474-484. IEEE Computer Society, 2018. URL: https://doi.org/10.1109/FOCS.2018.00052.
  18. Kazuhiko Matsumoto, Takao Nishizeki, and Nobuji Saito. An efficient algorithm for finding multicommodity flows in planar networks. SIAM J. Comput., 14(2):289-302, 1985. URL: https://doi.org/10.1137/0214023.
  19. Marcin Pilipczuk, Michal Pilipczuk, Piotr Sankowski, and Erik Jan van Leeuwen. Network sparsification for Steiner problems on planar and bounded-genus graphs. ACM Trans. Algorithms, 14(4):53:1-53:73, 2018. URL: https://doi.org/10.1145/3239560.
  20. J. Scott Provan. An approximation scheme for finding Steiner trees with obstacles. SIAM J. Comput., 17(5):920-934, 1988. URL: https://doi.org/10.1137/0217057.
  21. Alexander Schrijver et al. Combinatorial optimization: polyhedra and efficiency, volume 24. Springer, 2003. Google Scholar
  22. Paul Wollan. Extremal functions for rooted minors. Journal of Graph Theory, 58(2):159-178, 2008. URL: https://doi.org/10.1002/jgt.20301.
  23. David R. Wood and Svante Linusson. Thomassen’s choosability argument revisited. SIAM Journal on Discrete Mathematics, 24(4):1632-1637, 2010. URL: https://doi.org/10.1137/100796649.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail