Fine-Grained Complexity of Multiple Domination and Dominating Patterns in Sparse Graphs

Authors Marvin Künnemann , Mirza Redzic



PDF
Thumbnail PDF

File

LIPIcs.IPEC.2024.9.pdf
  • Filesize: 0.77 MB
  • 18 pages

Document Identifiers

Author Details

Marvin Künnemann
  • Karlsruhe Institute of Technology, Germany
Mirza Redzic
  • Karlsruhe Institute of Technology, Germany

Cite As Get BibTex

Marvin Künnemann and Mirza Redzic. Fine-Grained Complexity of Multiple Domination and Dominating Patterns in Sparse Graphs. In 19th International Symposium on Parameterized and Exact Computation (IPEC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 321, pp. 9:1-9:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024) https://doi.org/10.4230/LIPIcs.IPEC.2024.9

Abstract

The study of domination in graphs has led to a variety of dominating set problems studied in the literature. Most of these follow the following general framework: Given a graph G and an integer k, decide if there is a set S of k vertices such that (1) some inner connectivity property ϕ(S) (e.g., connectedness) is satisfied, and (2) each vertex v satisfies some domination property ρ(S, v) (e.g., there is some s ∈ S that is adjacent to v).
Since many real-world graphs are sparse, we seek to determine the optimal running time of such problems in both the number n of vertices and the number m of edges in G. While the classic dominating set problem admits a rather limited improvement in sparse graphs (Fischer, Künnemann, Redzic SODA'24), we show that natural variants studied in the literature admit much larger speed-ups, with a diverse set of possible running times. Specifically, using fast matrix multiplication we devise efficient algorithms which in particular yield the following conditionally optimal running times if the matrix multiplication exponent ω is equal to 2:  
- r-Multiple k-Dominating Set (each vertex v must be adjacent to at least r vertices in S): If r ≤ k-2, we obtain a running time of (m/n)^{r} n^{k-r+o(1)} that is conditionally optimal assuming the 3-uniform hyperclique hypothesis. In sparse graphs, this fully interpolates between n^{k-1± o(1)} and n^{2± o(1)}, depending on r. Curiously, when r = k-1, we obtain a randomized algorithm beating (m/n)^{k-1} n^{1+o(1)} and we show that this algorithm is close to optimal under the k-clique hypothesis. 
- H-Dominating Set (S must induce a pattern H). We conditionally settle the complexity of three such problems: (a) Dominating Clique (H is a k-clique), (b) Maximal Independent Set of size k (H is an independent set on k vertices), (c) Dominating Induced Matching (H is a perfect matching on k vertices). For all sufficiently large k, we provide algorithms with running time (m/n)m^{(k-1)/2+o(1)} for (a) and (b), and m^{k/2+o(1)} for (c). We show that these algorithms are essentially optimal under the k-Orthogonal Vectors Hypothesis (k-OVH). This is in contrast to H being the k-Star, which is susceptible only to a very limited improvement, with the best algorithm running in time n^{k-1 ± o(1)} in sparse graphs under k-OVH.

Subject Classification

ACM Subject Classification
  • Theory of computation → Graph algorithms analysis
  • Theory of computation → Parameterized complexity and exact algorithms
  • Theory of computation → Problems, reductions and completeness
Keywords
  • Fine-grained complexity theory
  • Dominating set
  • Sparsity in graphs
  • Conditionally optimal algorithms

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Amir Abboud, Arturs Backurs, and Virginia Vassilevska Williams. If the current clique algorithms are optimal, so is Valiant’s parser. SIAM Journal on Computing, 47(6):2527-2555, 2018. URL: https://doi.org/10.1137/16M1061771.
  2. José D. Alvarado, Simone Dantas, Elena Mohr, and Dieter Rautenbach. On the maximum number of minimum dominating sets in forests. Discret. Math., 342(4):934-942, 2019. URL: https://doi.org/10.1016/J.DISC.2018.11.025.
  3. Toru Araki. The k-tuple twin domination in de Bruijn and Kautz digraphs. Discret. Math., 308(24):6406-6413, 2008. URL: https://doi.org/10.1016/J.DISC.2007.12.020.
  4. Toru Araki. Connected k-tuple twin domination in de Bruijn and Kautz digraphs. Discret. Math., 309(21):6229-6234, 2009. URL: https://doi.org/10.1016/J.DISC.2009.05.031.
  5. G Argiroffo, V Leoni, and P Torres. Complexity of k-tuple total and total k-dominations for some subclasses of bipartite graphs. Information Processing Letters, 138:75-80, 2018. URL: https://doi.org/10.1016/J.IPL.2018.06.007.
  6. Gabriela Argiroffo, Valeria Leoni, and Pablo Torres. On the complexity of k-domination and k-tuple domination in graphs. Information Processing Letters, 115(6-8):556-561, 2015. URL: https://doi.org/10.1016/J.IPL.2015.01.007.
  7. Sepehr Assadi, Gillat Kol, and Zhijun Zhang. Rounds vs communication tradeoffs for maximal independent sets. In 63rd IEEE Annual Symposium on Foundations of Computer Science, FOCS 2022, Denver, CO, USA, October 31 - November 3, 2022, pages 1193-1204. IEEE, 2022. URL: https://doi.org/10.1109/FOCS54457.2022.00115.
  8. Sepehr Assadi, Krzysztof Onak, Baruch Schieber, and Shay Solomon. Fully dynamic maximal independent set with sublinear update time. In Ilias Diakonikolas, David Kempe, and Monika Henzinger, editors, Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2018, Los Angeles, CA, USA, June 25-29, 2018, pages 815-826. ACM, 2018. URL: https://doi.org/10.1145/3188745.3188922.
  9. Sepehr Assadi, Krzysztof Onak, Baruch Schieber, and Shay Solomon. Fully dynamic maximal independent set with sublinear in n update time. In Timothy M. Chan, editor, Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2019, San Diego, California, USA, January 6-9, 2019, pages 1919-1936. SIAM, 2019. URL: https://doi.org/10.1137/1.9781611975482.116.
  10. Alkida Balliu, Sebastian Brandt, Fabian Kuhn, and Dennis Olivetti. Distributed maximal matching and maximal independent set on hypergraphs. In Nikhil Bansal and Viswanath Nagarajan, editors, Proceedings of the 2023 ACM-SIAM Symposium on Discrete Algorithms, SODA 2023, Florence, Italy, January 22-25, 2023, pages 2632-2676. SIAM, 2023. URL: https://doi.org/10.1137/1.9781611977554.CH100.
  11. Silvia M. Bianchi, Graciela L. Nasini, Paola B. Tolomei, and Luis Miguel Torres. On dominating set polyhedra of circular interval graphs. Discret. Math., 344(4):112283, 2021. URL: https://doi.org/10.1016/J.DISC.2020.112283.
  12. Karl Bringmann, Nick Fischer, and Marvin Künnemann. A fine-grained analogue of Schaefer’s Theorem in P: Dichotomy of ∃^k∀-quantified First-Order Graph Properties. In 34th computational complexity conference (CCC 2019). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. Google Scholar
  13. Karl Bringmann and Marvin Künnemann. Quadratic conditional lower bounds for string problems and dynamic time warping. In 2015 IEEE 56th Annual Symposium on Foundations of Computer Science, pages 79-97, 2015. URL: https://doi.org/10.1109/FOCS.2015.15.
  14. Victor Chepoi. A note on r-dominating cliques. Discrete mathematics, 183(1-3):47-60, 1998. URL: https://doi.org/10.1016/S0012-365X(97)00076-9.
  15. Eun-Kyung Cho, Ilkyoo Choi, Hyemin Kwon, and Boram Park. A tight bound for independent domination of cubic graphs without 4-cycles. Journal of Graph Theory, 104(2):372-386, 2023. URL: https://doi.org/10.1002/JGT.22968.
  16. Eun-Kyung Cho, Ilkyoo Choi, and Boram Park. On independent domination of regular graphs. Journal of Graph Theory, 103(1):159-170, 2023. URL: https://doi.org/10.1002/JGT.22912.
  17. Eun-Kyung Cho, Jinha Kim, Minki Kim, and Sang-il Oum. Independent domination of graphs with bounded maximum degree. Journal of Combinatorial Theory, Series B, 158:341-352, 2023. URL: https://doi.org/10.1016/J.JCTB.2022.10.004.
  18. Margaret B Cozzens and Laura L Kelleher. Dominating cliques in graphs. Discrete Mathematics, 86(1-3):101-116, 1990. URL: https://doi.org/10.1016/0012-365X(90)90353-J.
  19. Jonathan Cutler and A. J. Radcliffe. Counting dominating sets and related structures in graphs. Discret. Math., 339(5):1593-1599, 2016. URL: https://doi.org/10.1016/J.DISC.2015.12.011.
  20. Rodney G. Downey and Michael R. Fellows. Fixed-parameter tractability and completeness I: basic results. SIAM J. Comput., 24(4):873-921, 1995. URL: https://doi.org/10.1137/S0097539792228228.
  21. Feodor F Dragan and Andreas Brandstädt. Dominating cliques in graphs with hypertree structure. In STACS 94: 11th Annual Symposium on Theoretical Aspects of Computer Science Caen, France, February 24-26, 1994 Proceedings 11, pages 735-746. Springer, 1994. URL: https://doi.org/10.1007/3-540-57785-8_186.
  22. Friedrich Eisenbrand and Fabrizio Grandoni. On the complexity of fixed parameter clique and dominating set. Theoretical Computer Science, 326(1-3):57-67, 2004. URL: https://doi.org/10.1016/J.TCS.2004.05.009.
  23. Yibin Fang and Liming Xiong. Circumference of a graph and its distance dominating longest cycles. Discrete Mathematics, 344(2):112196, 2021. URL: https://doi.org/10.1016/j.disc.2020.112196.
  24. Yibin Fang and Liming Xiong. On the dominating (induced) cycles of iterated line graphs. Discrete Applied Mathematics, 325:43-51, 2023. URL: https://doi.org/10.1016/j.dam.2022.09.025.
  25. Jill R. Faudree, Ralph J. Faudree, Ronald J. Gould, Paul Horn, and Michael S. Jacobson. Degree sum and vertex dominating paths. J. Graph Theory, 89(3):250-265, 2018. URL: https://doi.org/10.1002/JGT.22249.
  26. Ralph J. Faudree, Ronald J. Gould, Michael S. Jacobson, and Douglas B. West. Minimum degree and dominating paths. J. Graph Theory, 84(2):202-213, 2017. URL: https://doi.org/10.1002/JGT.22021.
  27. John Frederick Fink and Michael S Jacobson. n-domination in graphs. In Graph theory with applications to algorithms and computer science, pages 283-300, 1985. Google Scholar
  28. John Frederick Fink and Michael S Jacobson. On n-domination, n-dependence and forbidden subgraphs. In Graph theory with applications to algorithms and computer science, pages 301-311, 1985. Google Scholar
  29. Nick Fischer, Marvin Künnemann, and Mirza Redzic. The effect of sparsity on k-dominating set and related first-order graph properties. In Proceedings of the 2024 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 4704-4727. SIAM, 2024. URL: https://doi.org/10.1137/1.9781611977912.168.
  30. Fedor V. Fomin, Daniel Lokshtanov, Saket Saurabh, and Dimitrios M. Thilikos. Linear kernels for (connected) dominating set on H-minor-free graphs. In Yuval Rabani, editor, Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2012, Kyoto, Japan, January 17-19, 2012, pages 82-93. SIAM, 2012. URL: https://doi.org/10.1137/1.9781611973099.7.
  31. Fedor V. Fomin and Dimitrios M. Thilikos. Dominating sets in planar graphs: branch-width and exponential speed-up. In Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, January 12-14, 2003, Baltimore, Maryland, USA, pages 168-177. ACM/SIAM, 2003. URL: http://dl.acm.org/citation.cfm?id=644108.644138.
  32. Andrei Gagarin and Vadim E. Zverovich. A generalised upper bound for the k-tuple domination number. Discret. Math., 308(5-6):880-885, 2008. URL: https://doi.org/10.1016/J.DISC.2007.07.033.
  33. Mohsen Ghaffari. Local computation of maximal independent set. In 63rd IEEE Annual Symposium on Foundations of Computer Science, FOCS 2022, Denver, CO, USA, October 31 - November 3, 2022, pages 438-449. IEEE, 2022. URL: https://doi.org/10.1109/FOCS54457.2022.00049.
  34. Frank Harary and Teresa W. Haynes. Nordhaus-Gaddum inequalities for domination in graphs. Discrete Mathematics, 155(1):99-105, 1996. Combinatorics. URL: https://doi.org/10.1016/0012-365X(94)00373-Q.
  35. Frank Harary and Teresa W. Haynes. Double domination in graphs. Ars Comb., 55, 2000. Google Scholar
  36. Michael A. Henning and Adel P. Kazemi. k-tuple total domination in graphs. Discret. Appl. Math., 158(9):1006-1011, 2010. URL: https://doi.org/10.1016/J.DAM.2010.01.009.
  37. Karthik C. S., Bundit Laekhanukit, and Pasin Manurangsi. On the parameterized complexity of approximating dominating set. In Ilias Diakonikolas, David Kempe, and Monika Henzinger, editors, Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2018, Los Angeles, CA, USA, June 25-29, 2018, pages 1283-1296. ACM, 2018. URL: https://doi.org/10.1145/3188745.3188896.
  38. Ekkehard Köhler. Connected domination and dominating clique in trapezoid graphs. Discret. Appl. Math., 99(1-3):91-110, 2000. URL: https://doi.org/10.1016/S0166-218X(99)00127-4.
  39. Dieter Kratsch. Finding dominating cliques efficiently, in strongly chordal graphs and undirected path graphs. Discrete mathematics, 86(1-3):225-238, 1990. URL: https://doi.org/10.1016/0012-365X(90)90363-M.
  40. Dieter Kratsch, Peter Damaschke, and Anna Lubiw. Dominating cliques in chordal graphs. Discrete Mathematics, 128(1-3):269-275, 1994. URL: https://doi.org/10.1016/0012-365X(94)90118-X.
  41. Kirsti Kuenzel and Douglas F Rall. On independent domination in direct products. Graphs and Combinatorics, 39(1):7, 2023. URL: https://doi.org/10.1007/S00373-022-02600-0.
  42. Peng Li, Aifa Wang, and Jianhui Shang. A simple optimal algorithm for k-tuple dominating problem in interval graphs. J. Comb. Optim., 45(1):14, 2023. URL: https://doi.org/10.1007/S10878-022-00932-4.
  43. Andrea Lincoln, Virginia Vassilevska Williams, and Ryan Williams. Tight hardness for shortest cycles and paths in sparse graphs. In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1236-1252. SIAM, 2018. URL: https://doi.org/10.1137/1.9781611975031.80.
  44. Jaroslav Nešetřil and Svatopluk Poljak. On the complexity of the subgraph problem. Commentationes Mathematicae Universitatis Carolinae, 26(2):415-419, 1985. Google Scholar
  45. Shiwei Pan, Yiming Ma, Yiyuan Wang, Zhiguo Zhou, Jinchao Ji, Minghao Yin, and Shuli Hu. An improved master-apprentice evolutionary algorithm for minimum independent dominating set problem. Frontiers of Computer Science, 17(4):174326, 2023. URL: https://doi.org/10.1007/S11704-022-2023-7.
  46. Mihai Pătraşcu and Ryan Williams. On the possibility of faster SAT algorithms. In Moses Charikar, editor, Proceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2010, Austin, Texas, USA, January 17-19, 2010, pages 1065-1075. SIAM, 2010. URL: https://doi.org/10.1137/1.9781611973075.86.
  47. Shay Solomon and Amitai Uzrad. Dynamic ((1+ε) ln n)-approximation algorithms for minimum set cover and dominating set. In Barna Saha and Rocco A. Servedio, editors, Proceedings of the 55th Annual ACM Symposium on Theory of Computing, STOC 2023, Orlando, FL, USA, June 20-23, 2023, pages 1187-1200. ACM, 2023. URL: https://doi.org/10.1145/3564246.3585211.
  48. Akira Suzuki, Amer E. Mouawad, and Naomi Nishimura. Reconfiguration of dominating sets. J. Comb. Optim., 32(4):1182-1195, 2016. URL: https://doi.org/10.1007/S10878-015-9947-X.
  49. Dmitrii S. Taletskii. Trees with extremal numbers of k-dominating sets. Discret. Math., 345(1):112656, 2022. URL: https://doi.org/10.1016/J.DISC.2021.112656.
  50. Virginia Vassilevska Williams. On some fine-grained questions in algorithms and complexity. In Proc. of the International Congress of Mathematicians, ICM'18, pages 3447-3487, 2018. Google Scholar
  51. Henk Jan Veldman. Existence of dominating cycles and paths. Discret. Math., 43(2-3):281-296, 1983. URL: https://doi.org/10.1016/0012-365X(83)90165-6.
  52. Ryan Williams. A new algorithm for optimal 2-constraint satisfaction and its implications. Theor. Comput. Sci., 348(2-3):357-365, 2005. URL: https://doi.org/10.1016/J.TCS.2005.09.023.
  53. Virginia Vassilevska Williams, Yinzhan Xu, Zixuan Xu, and Renfei Zhou. New bounds for matrix multiplication: from alpha to omega. In David P. Woodruff, editor, Proceedings of the 2024 ACM-SIAM Symposium on Discrete Algorithms, SODA 2024, Alexandria, VA, USA, January 7-10, 2024, pages 3792-3835. SIAM, 2024. URL: https://doi.org/10.1137/1.9781611977912.134.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail