Document

# Routing in Polygonal Domains

## File

LIPIcs.ISAAC.2017.10.pdf
• Filesize: 0.74 MB
• 13 pages

## Cite As

Bahareh Banyassady, Man-Kwun Chiu, Matias Korman, Wolfgang Mulzer, André van Renssen, Marcel Roeloffzen, Paul Seiferth, Yannik Stein, Birgit Vogtenhuber, and Max Willert. Routing in Polygonal Domains. In 28th International Symposium on Algorithms and Computation (ISAAC 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 92, pp. 10:1-10:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)
https://doi.org/10.4230/LIPIcs.ISAAC.2017.10

## Abstract

We consider the problem of routing a data packet through the visibility graph of a polygonal domain P with n vertices and h holes. We may preprocess P to obtain a label and a routing table for each vertex. Then, we must be able to route a data packet between any two vertices p and q of P , where each step must use only the label of the target node q and the routing table of the current node. For any fixed eps > 0, we pre ent a routing scheme that always achieves a routing path that exceeds the shortest path by a factor of at most 1 + eps. The labels have O(log n) bits, and the routing tables are of size O((eps^{-1} + h) log n). The preprocessing time is O(n^2 log n + hn^2 + eps^{-1}hn). It can be improved to O(n 2 + eps^{-1}n) for simple polygons.
##### Keywords
• polygonal domains
• routing scheme
• small stretch,Yao graph

## Metrics

• Access Statistics
• Total Accesses (updated on a weekly basis)
0

## References

1. Ittai Abraham and Cyril Gavoille. On approximate distance labels and routing schemes with affine stretch. In Proc. 25th DISC, pages 404-415, 2011.
2. Takao Asano, Tetsuo Asano, Leonidas Guibas, John Hershberger, and Hiroshi Imai. Visibility of disjoint polygons. Algorithmica, 1(1-4):49-63, 1986.
3. Baruch Awerbuch, Amotz Bar-Noy, Nathan Linial, and David Peleg. Improved routing strategies with succinct tables. JALG, 11(3):307-341, 1990.
4. Reuven Bar-Yehuda and Bernard Chazelle. Triangulating disjoint Jordan chains. IJCGA, 4(04):475-481, 1994.
5. Prosenjit Bose, Rolf Fagerberg, André van Renssen, and Sander Verdonschot. Optimal local routing on Delaunay triangulations defined by empty equilateral triangles. SICOMP, 44(6):1626 - 1649, 2015.
6. Prosenjit Bose, Rolf Fagerberg, André van Renssen, and Sander Verdonschot. Competitive local routing with constraints. JoCG, 8(1):125-152, 2017.
7. Shiri Chechik. Compact routing schemes with improved stretch. In Proc. PODC, pages 33-41, 2013.
8. Lenore J Cowen. Compact routing with minimum stretch. JALG, 38(1):170-183, 2001.
9. Tamar Eilam, Cyril Gavoille, and David Peleg. Compact routing schemes with low stretch factor. JALG, 46(2):97-114, 2003.
10. Pierre Fraigniaud and Cyril Gavoille. Routing in trees. In Proc. 28th ICALP, pages 757-772, 2001.
11. Silvia Giordano and Ivan Stojmenovic. Position based routing algorithms for ad hoc networks: A taxonomy. In Ad hoc wireless networking, pages 103-136. Springer-Verlag, 2004.
12. Leonidas Guibas, John Hershberger, Daniel Leven, Micha Sharir, and Robert E Tarjan. Linear-time algorithms for visibility and shortest path problems inside triangulated simple polygons. Algorithmica, 2(1-4):209-233, 1987.
13. John Hershberger and Subhash Suri. An optimal algorithm for Euclidean shortest paths in the plane. SICOMP, 28(6):2215-2256, 1999.
14. Barry Joe and Richard B Simpson. Corrections to Lee’s visibility polygon algorithm. BIT Numerical Mathematics, 27(4):458-473, 1987.
15. Haim Kaplan, Wolfgang Mulzer, Liam Roditty, and Paul Seiferth. Routing in unit disk graphs. In Proc. 12th LATIN, pages 536-548, 2016.
16. Sanjiv Kapoor and SN Maheshwari. Efficient algorithms for Euclidean shortest path and visibility problems with polygonal obstacles. In Proc. 4th SoCG, pages 172-182, 1988.
17. Sanjiv Kapoor, SN Maheshwari, and Joseph SB Mitchell. An efficient algorithm for Euclidean shortest paths among polygonal obstacles in the plane. DCG, 18(4):377-383, 1997.
18. Der-Tsai Lee. Visibility of a simple polygon. CGVIP, 22(2):207-221, 1983.
19. Joseph SB Mitchell. A new algorithm for shortest paths among obstacles in the plane. AMAI, 3(1):83-105, 1991.
20. Joseph SB Mitchell. Shortest paths among obstacles in the plane. IJCGA, 6(03):309-332, 1996.
21. Mark H Overmars and Emo Welzl. New methods for computing visibility graphs. In Proc. 4th SoCG, pages 164-171, 1988.
22. David Peleg and Eli Upfal. A trade-off between space and efficiency for routing tables. J. ACM, 36(3):510-530, 1989.
23. Liam Roditty and Roei Tov. New routing techniques and their applications. In Proc. PODC, pages 23-32, 2015.
24. Liam Roditty and Roei Tov. Close to linear space routing schemes. Distributed Computing, 29(1):65-74, 2016.
25. Nicola Santoro and Ramez Khatib. Labelling and implicit routing in networks. The Computer Journal, 28(1):5-8, 1985.
26. Micha Sharir and Amir Schorr. On shortest paths in polyhedral spaces. SICOMP, 15(1):193-215, 1986.
27. James A Storer and John H Reif. Shortest paths in the plane with polygonal obstacles. J. ACM, 41(5):982-1012, 1994.
28. Mikkel Thorup. Compact oracles for reachability and approximate distances in planar digraphs. J. ACM, 51(6):993-1024, 2004.
29. Mikkel Thorup and Uri Zwick. Compact routing schemes. In Proc. 13th SPAA, pages 1-10, 2001.
30. Mikkel Thorup and Uri Zwick. Approximate distance oracles. J. ACM, 52(1):1-24, 2005.
31. Emo Welzl. Constructing the visibility graph for n-line segments in 𝒪(n²) time. IPL, 20(4):167-171, 1985.
32. Chenyu Yan, Yang Xiang, and Feodor F Dragan. Compact and low delay routing labeling scheme for unit disk graphs. CGTA, 45(7):305-325, 2012.
33. Andrew Chi-Chih Yao. On constructing minimum spanning trees in k-dimensional spaces and related problems. SICOMP, 11(4):721-736, 1982.
X

Feedback for Dagstuhl Publishing