Document

# Shortcuts for the Circle

## File

LIPIcs.ISAAC.2017.9.pdf
• Filesize: 0.77 MB
• 13 pages

## Cite As

Sang Won Bae, Mark de Berg, Otfried Cheong, Joachim Gudmundsson, and Christos Levcopoulos. Shortcuts for the Circle. In 28th International Symposium on Algorithms and Computation (ISAAC 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 92, pp. 9:1-9:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)
https://doi.org/10.4230/LIPIcs.ISAAC.2017.9

## Abstract

Let C be the unit circle in R^2. We can view C as a plane graph whose vertices are all the points on C, and the distance between any two points on C is the length of the smaller arc between them. We consider a graph augmentation problem on C, where we want to place k >= 1 shortcuts on C such that the diameter of the resulting graph is minimized. We analyze for each k with 1 <= k <= 7 what the optimal set of shortcuts is. Interestingly, the minimum diameter one can obtain is not a strictly decreasing function of k. For example, with seven shortcuts one cannot obtain a smaller diameter than with six shortcuts. Finally, we prove that the optimal diameter is 2 + Theta(1/k^(2/3)) for any k.
##### Keywords
• Computational geometry
• graph augmentation problem
• circle
• shortcut
• diameter

## Metrics

• Access Statistics
• Total Accesses (updated on a weekly basis)
0

## References

1. S. W. Bae, M. de Berg, O. Cheong, J. Gudmundsson, and C. Levcopoulos. Shortcuts for the Circle, 2016. URL: http://arxiv.org/abs/1612.02412.
2. D. Bilò, L. Gualà, and G. Proietti. Improved approximability and non-approximability results for graph diameter decreasing problems. Theoretical Computer Science, 417:12-22, 2012.
3. J. Cáceres, D. Garijo, A. González, A. Márquez, M. L. Puertas, and P. Ribeiro. Shortcut sets for plane Euclidean networks (extended abstract). Electronic Notes in Discrete Mathematics, 54:163-168, 2016. URL: http://dx.doi.org/10.1016/j.endm.2016.09.029.
4. J.-L. De Carufel, C. Grimm, A. Maheshwari, and M. Smid. Minimizing the Continuous Diameter when Augmenting Paths and Cycles with Shortcuts. In 15th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2016), volume 53 of Leibniz International Proceedings in Informatics (LIPIcs), pages 27:1-27:14, 2016. URL: http://dx.doi.org/10.4230/LIPIcs.SWAT.2016.1.
5. F. R. K. Chung. Diameters of graphs: old problems and new results. Congressus Numerantium, 60:295-317, 1987.
6. F. R. K. Chung and M. R. Garey. Diameter bounds for altered graphs. Journal of Graph Theory, 8:511-534, 1984.
7. P. Erdös and A. Rényi. On a problem in the theory of graphs (in Hungarian). Publications of the Mathematical Institute of the Hungarian Academy of Sciences, 7:623-641, 1962.
8. P. Erdös, A. Rényi, and V. T. Sós. On a problem of graph theory. Studia Scientarium Mathematicarum Hungar, 1:215-235, 1966.
9. F. Frati, S. Gaspers, J. Gudmundsson, and L. Mathieson. Augmenting graphs to minimize the diameter. Algorithmica, 72(4):995-1010, 2015.
10. U. Große, J. Gudmundsson, C. Knauer, M. Smid, and F. Stehn. Fast algorithms for diameter-optimally augmenting paths. In 42nd International Colloquium Automata, Languages, and Programming (ICALP), pages 678-688. Springer, 2015.
11. S. Kapoor and M. Sarwat. Bounded-diameter minimum-cost graph problems. Theory of Computing Systems, 41(4):779-794, 2007.
12. C. L. Li, S. T. McCormick, and D. Simchi-Levi. On the minimum-cardinality-bounded-diameter and the bounded-cardinality-minimum-diameter edge addition problems. Operation Research Letters, 11(5):303-308, 1992.
13. A. A. Schoone, H. L. Bodlaender, and J. van Leeuwen. Diameter increase caused by edge deletion. Journal of Graph Theory, 11:409-427, 1987.
14. H. Wang. An improved algorithm for diameter-optimally augmenting paths in a metric space, 2016. URL: http://arxiv.org/abs/1608.04456.
15. B. Yang. Euclidean chains and their shortcuts. Theoretical Computer Science, 497:55-67, 2013. URL: http://dx.doi.org/10.1016/j.tcs.2012.03.021.
X

Feedback for Dagstuhl Publishing