LIPIcs.ISAAC.2018.15.pdf
- Filesize: 0.72 MB
- 12 pages
We study augmenting a plane Euclidean network with a segment, called shortcut, to minimize the largest distance between any two points along the edges of the resulting network. Questions of this type have received considerable attention recently, mostly for discrete variants of the problem. We study a fully continuous setting, where all points on the network and the inserted segment must be taken into account. We present the first results on the computation of optimal shortcuts for general networks in this model, together with several results for networks that are paths, restricted to two types of shortcuts: shortcuts with a fixed orientation and simple shortcuts.
Feedback for Dagstuhl Publishing