Document Open Access Logo

Competitive Searching for a Line on a Line Arrangement

Authors Quirijn Bouts, Thom Castermans, Arthur van Goethem, Marc van Kreveld, Wouter Meulemans



PDF
Thumbnail PDF

File

LIPIcs.ISAAC.2018.49.pdf
  • Filesize: 0.67 MB
  • 12 pages

Document Identifiers

Author Details

Quirijn Bouts
  • ASML Veldhoven, the Netherlands
Thom Castermans
  • TU Eindhoven, the Netherlands
Arthur van Goethem
  • TU Eindhoven, the Netherlands
Marc van Kreveld
  • Utrecht University, the Netherlands
Wouter Meulemans
  • TU Eindhoven, the Netherlands

Cite AsGet BibTex

Quirijn Bouts, Thom Castermans, Arthur van Goethem, Marc van Kreveld, and Wouter Meulemans. Competitive Searching for a Line on a Line Arrangement. In 29th International Symposium on Algorithms and Computation (ISAAC 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 123, pp. 49:1-49:12, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2018)
https://doi.org/10.4230/LIPIcs.ISAAC.2018.49

Abstract

We discuss the problem of searching for an unknown line on a known or unknown line arrangement by a searcher S, and show that a search strategy exists that finds the line competitively, that is, with detour factor at most a constant when compared to the situation where S has all knowledge. In the case where S knows all lines but not which one is sought, the strategy is 79-competitive. We also show that it may be necessary to travel on Omega(n) lines to realize a constant competitive ratio. In the case where initially, S does not know any line, but learns about the ones it encounters during the search, we give a 414.2-competitive search strategy.

Subject Classification

ACM Subject Classification
  • Theory of computation → Design and analysis of algorithms
Keywords
  • Competitive searching
  • line arrangement
  • detour factor
  • search strategy

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Steve Alpern and Shmuel Gal. The Theory of Search Games and Rendezvous, volume 55. Springer Science &Business Media, 2006. Google Scholar
  2. Ricardo Baeza-Yates, Joseph Culberson, and Gregory Rawlins. Searching in the Plane. Information &Computation, 106(2):234-252, 1993. Google Scholar
  3. Ricardo Baeza-Yates and René Schott. Parallel searching in the plane. Computational Geometry, 5(3):143-154, 1995. Google Scholar
  4. Anatole Beck and D.J. Newman. Yet more on the linear search problem. Israel Journal of Mathematics, 8(4):419-429, 1970. Google Scholar
  5. Richard Bellman. A minimization problem. Bulletin of the American Mathematical Society, 62(3):270, 1956. Google Scholar
  6. Avrim Blum, Prabhakar Raghavan, and Baruch Schieber. Navigating in unfamiliar geometric terrain. SIAM Journal on Computing, 26(1):110-137, 1997. Google Scholar
  7. Prosenjit Bose, Andrej Brodnik, Svante Carlsson, Erik D. Demaine, Rudolf Fleischer, Alejandro López-Ortiz, Pat Morin, and J. Ian Munro. Online routing in convex subdivisions. International Journal of Computational Geometry and Applications, 12(4):283-295, 2002. Google Scholar
  8. Prosenjit Bose, Jean-Lou De Carufel, and Stephane Durocher. Searching on a line: A complete characterization of the optimal solution. Theoretical Computer Science, 569:24-42, 2015. Google Scholar
  9. Prosenjit Bose, Jean-Lou De Carufel, Stephane Durocher, and Perouz Taslakian. Competitive online routing on Delaunay triangulations. International Journal of Computational Geometry &Applications, 27(04):241-253, 2017. Google Scholar
  10. Prosenjit Bose, Rolf Fagerberg, André van Renssen, and Sander Verdonschot. Optimal local routing on Delaunay triangulations defined by empty equilateral triangles. SIAM Journal on Computing, 44(6):1626-1649, 2015. Google Scholar
  11. Prosenjit Bose and Pat Morin. Competitive online routing in geometric graphs. Theoretical Computer Science, 324(2-3):273-288, 2004. Google Scholar
  12. Prosenjit Bose and Pat Morin. Online routing in triangulations. SIAM Journal on Computing, 33(4):937-951, 2004. Google Scholar
  13. Erik D. Demaine, Sándor P. Fekete, and Shmuel Gal. Online searching with turn cost. Theoretical Computer Science, 361(2-3):342-355, 2006. Google Scholar
  14. Sándor P. Fekete, Rolf Klein, and Andreas Nüchter. Online searching with an autonomous robot. Computational Geometry, 34(2):102-115, 2006. Google Scholar
  15. Subir Kumar Ghosh and Rolf Klein. Online algorithms for searching and exploration in the plane. Computer Science Review, 4(4):189-201, 2010. Google Scholar
  16. Mikael Hammar, Bengt J. Nilsson, and Sven Schuierer. Parallel searching on m rays. Computational Geometry, 18(3):125-139, 2001. Google Scholar
  17. Christoph A. Hipke, Christian Icking, Rolf Klein, and Elmar Langetepe. How to Find a Point on a Line Within a Fixed Distance. Discrete Applied Mathematics, 93(1):67-73, 1999. Google Scholar
  18. Frank Hoffmann, Christian Icking, Rolf Klein, and Klaus Kriegel. The Polygon Exploration Problem. SIAM Journal on Computing, 31(2):577-600, 2001. Google Scholar
  19. Christian Icking, Rolf Klein, Elmar Langetepe, Sven Schuierer, and Ines Semrau. An optimal competitive strategy for walking in streets. SIAM Journal on Computing, 33(2):462-486, 2004. Google Scholar
  20. J.R. Isbell. An optimal search pattern. Naval Research Logistics Quarterly, 4(4):357-359, 1957. Google Scholar
  21. Bala Kalyanasundaram and Kirk Pruhs. A Competitive Analysis of Algorithms for Searching Unknown Scenes. Computational Geometry, 3:139-155, 1993. Google Scholar
  22. Ming-Yang Kao, John H. Reif, and Stephen R. Tate. Searching in an unknown environment: An optimal randomized algorithm for the cow-path problem. Information and Computation, 131(1):63-79, 1996. Google Scholar
  23. Alejandro López-Ortiz and Sven Schuierer. The ultimate strategy to search on m rays? Theoretical Computer Science, 261(2):267-295, 2001. Google Scholar
  24. Daniel D. Sleator and Robert E. Tarjan. Amortized efficiency of list update and paging rules. Communications of the ACM, 28(2):202-208, 1985. Google Scholar
  25. Marc van Kreveld. Competitive Analysis of the Pokémon Go Search Problem. In Abstracts of the 33rd European Workshop on Computational Geometry, pages 25-28, 2017. http://csconferences.mah.se/eurocg2017/proceedings.pdf. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail