Colouring (P_r+P_s)-Free Graphs

Authors Tereza Klimosová, Josef Malík, Tomás Masarík, Jana Novotná, Daniël Paulusma, Veronika Slívová



PDF
Thumbnail PDF

File

LIPIcs.ISAAC.2018.5.pdf
  • Filesize: 472 kB
  • 13 pages

Document Identifiers

Author Details

Tereza Klimosová
  • Department of Applied Mathematics, Charles University, Prague, Czech Republic
Josef Malík
  • Czech Technical University in Prague, Czech Republic
Tomás Masarík
  • Department of Applied Mathematics, Charles University, Prague, Czech Republic
Jana Novotná
  • Department of Applied Mathematics, Charles University, Prague, Czech Republic
Daniël Paulusma
  • Department of Computer Science, Durham University, Durham, UK
Veronika Slívová
  • Computer Science Institute of Charles University, Prague, Czech Republic

Cite AsGet BibTex

Tereza Klimosová, Josef Malík, Tomás Masarík, Jana Novotná, Daniël Paulusma, and Veronika Slívová. Colouring (P_r+P_s)-Free Graphs. In 29th International Symposium on Algorithms and Computation (ISAAC 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 123, pp. 5:1-5:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)
https://doi.org/10.4230/LIPIcs.ISAAC.2018.5

Abstract

The k-Colouring problem is to decide if the vertices of a graph can be coloured with at most k colours for a fixed integer k such that no two adjacent vertices are coloured alike. If each vertex u must be assigned a colour from a prescribed list L(u) subseteq {1,...,k}, then we obtain the List k-Colouring problem. A graph G is H-free if G does not contain H as an induced subgraph. We continue an extensive study into the complexity of these two problems for H-free graphs. We prove that List 3-Colouring is polynomial-time solvable for (P_2+P_5)-free graphs and for (P_3+P_4)-free graphs. Combining our results with known results yields complete complexity classifications of 3-Colouring and List 3-Colouring on H-free graphs for all graphs H up to seven vertices. We also prove that 5-Colouring is NP-complete for (P_3+P_5)-free graphs.

Subject Classification

ACM Subject Classification
  • Mathematics of computing → Graph theory
Keywords
  • vertex colouring
  • H-free graph
  • linear forest

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Marthe Bonamy, Konrad K. Dabrowski, Carl Feghali, Matthew Johnson, and Daniël Paulusma. Independent feedback vertex set for P₅-free graphs. Algorithmica, to appear. Google Scholar
  2. Flavia Bonomo, Maria Chudnovsky, Peter Maceli, Oliver Schaudt, Maya Stein, and Mingxian Zhong. Three-coloring and list three-coloring of graphs without induced paths on seven vertices. Combinatorica, (in press). Google Scholar
  3. Hajo Broersma, Fedor V. Fomin, Petr A. Golovach, and Daniël Paulusma. Three complexity results on coloring P_k-free graphs. European Journal of Combinatorics, 34(3):609-619, 2013. Google Scholar
  4. Hajo Broersma, Petr A. Golovach, Daniël Paulusma, and Jian Song. Updating the complexity status of coloring graphs without a fixed induced linear forest. TCS, 414(1):9-19, 2012. Google Scholar
  5. Maria Chudnovsky. Coloring graphs with forbidden induced subgraphs. Proc. ICM 2014, IV:291-302, 2014. Google Scholar
  6. Maria Chudnovsky, Peter Maceli, Juraj Stacho, and Mingxian Zhong. 4-Coloring P₆-free graphs with no induced 5-cycles. Journal of Graph Theory, 84(3):262-285, 2017. Google Scholar
  7. Maria Chudnovsky, Sophie Spirkl, and Mingxian Zhong. Four-coloring P₆-free graphs. I. Extending an excellent precoloring. CoRR, 1802.02282, 2018. Google Scholar
  8. Maria Chudnovsky, Sophie Spirkl, and Mingxian Zhong. Four-coloring P₆-free graphs. II. Finding an excellent precoloring. CoRR, 1802.02283, 2018. Google Scholar
  9. Maria Chudnovsky and Juraj Stacho. 3-colorable subclasses of P₈-free graphs. Man., 2017. Google Scholar
  10. Jean-François Couturier, Petr A. Golovach, Dieter Kratsch, and Daniël Paulusma. List Coloring in the Absence of a Linear Forest. Algorithmica, 71(1):21-35, 2015. Google Scholar
  11. Konrad K. Dabrowski and Daniël Paulusma. On colouring (2P₂,H)-free and (P5,H)-free graphs. Information Processing Letters, 131:26-32, 2018. Google Scholar
  12. Keith Edwards. The complexity of colouring problems on dense graphs. TCS, 43:337-343, 1986. Google Scholar
  13. Thomas Emden-Weinert, Stefan Hougardy, and Bernd Kreuter. Uniquely Colourable Graphs and the Hardness of Colouring Graphs of Large Girth. Combinatorics, Probability and Computing, 7(04):375-386, 1998. Google Scholar
  14. Petr A. Golovach, Matthew Johnson, Daniël Paulusma, and Jian Song. A Survey on the Computational Complexity of Colouring Graphs with Forbidden Subgraphs. Journal of Graph Theory, 84(4):331-363, 2017. Google Scholar
  15. Petr A. Golovach, Daniël Paulusma, and Jian Song. Closing complexity gaps for coloring problems on H-free graphs. Information and Computation, 237:204-214, 2014. Google Scholar
  16. Carla Groenland, Karolina Okrasa, Pawel Rzążewski, Alex Scott, Paul Seymour, and Sophie Spirkl. H-colouring P_t-free graphs in subexponential time. CoRR, 1803.05396, 2018. Google Scholar
  17. Andrzej Grzesik, Tereza Klimošová, Marcin Pilipczuk, and Michał Pilipczuk. Polynomial-time algorithm for Maximum Weight Independent Set on P₆-free graphs. CoRR, 1707.05491, 2017. Google Scholar
  18. Chính T. Hoàng, Marcin Kamiński, Vadim V. Lozin, Joe Sawada, and Xiao Shu. Deciding k-Colorability of P₅-Free Graphs in Polynomial Time. Algorithmica, 57(1):74-81, 2010. Google Scholar
  19. Ian Holyer. The NP-Completeness of Edge-Coloring. SIAM J Comput, 10(4):718-720, 1981. Google Scholar
  20. Shenwei Huang. Improved complexity results on k-coloring P_t-free graphs. European Journal of Combinatorics, 51:336-346, 2016. Google Scholar
  21. Tommy R. Jensen and Bjarne Toft. Graph coloring problems. John Wiley &Sons, 1995. Google Scholar
  22. Tereza Klimošová, Josef Malík, Tomáš Masařík, Jana Novotná, Daniël Paulusma, and Veronika Slívová. Colouring (P_r+ P_s)-Free Graphs. CoRR, 2018. URL: http://arxiv.org/abs/1804.11091v2.
  23. Daniel Král', Jan Kratochvíl, Zsolt Tuza, and Gerhard J. Woeginger. Complexity of Coloring Graphs without Forbidden Induced Subgraphs. Proc. WG 2001, LNCS, 2204:254-262, 2001. Google Scholar
  24. Jan Kratochvíl, Zsolt Tuza, and Margit Voigt. New trends in the theory of graph colorings: choosability and list coloring. Proc. DIMATIA-DIMACS Conference, 49:183-197, 1999. Google Scholar
  25. Van Bang Le, Bert Randerath, and Ingo Schiermeyer. On the complexity of 4-coloring graphs without long induced paths. TCS, 389(1-2):330-335, 2007. Google Scholar
  26. Daniel Leven and Zvi Galil. NP completeness of finding the chromatic index of regular graphs. Journal of Algorithms, 4(1):35-44, 1983. Google Scholar
  27. László Lovász. Coverings and coloring of hypergraphs. Congr. Numer., VIII:3-12, 1973. Google Scholar
  28. Daniël Paulusma. Open problems on graph coloring for special graph classes. Proc. WG 2015, LNCS, 9224:16-30, 2015. Google Scholar
  29. Bert Randerath and Ingo Schiermeyer. 3-Colorability in P for P_6-free graphs. Discrete Applied Mathematics, 136(2-3):299-313, 2004. Google Scholar
  30. Bert Randerath and Ingo Schiermeyer. Vertex Colouring and Forbidden Subgraphs - A Survey. Graphs and Combinatorics, 20(1):1-40, 2004. Google Scholar
  31. Bert Randerath, Ingo Schiermeyer, and Meike Tewes. Three-colourability and forbidden subgraphs. II: polynomial algorithms. Discrete Mathematics, 251(1-3):137-153, 2002. Google Scholar
  32. Thomas J. Schaefer. The Complexity of Satisfiability Problems. STOC, pages 216-226, 1978. Google Scholar
  33. Zsolt Tuza. Graph colorings with local constraints - a survey. Discussiones Mathematicae Graph Theory, 17(2):161-228, 1997. Google Scholar
  34. Gerhard J. Woeginger and Jiří Sgall. The complexity of coloring graphs without long induced paths. Acta Cybernetica, 15(1):107-117, 2001. Google Scholar