Document

# Length-Bounded Cuts: Proper Interval Graphs and Structural Parameters

## File

LIPIcs.ISAAC.2020.36.pdf
• Filesize: 0.57 MB
• 14 pages

## Cite As

Matthias Bentert, Klaus Heeger, and Dušan Knop. Length-Bounded Cuts: Proper Interval Graphs and Structural Parameters. In 31st International Symposium on Algorithms and Computation (ISAAC 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 181, pp. 36:1-36:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)
https://doi.org/10.4230/LIPIcs.ISAAC.2020.36

## Abstract

In the presented paper, we study the Length-Bounded Cut problem for special graph classes as well as from a parameterized-complexity viewpoint. Here, we are given a graph G, two vertices s and t, and positive integers β and λ. The task is to find a set F of edges of size at most β such that every s-t-path of length at most λ in G contains some edge in F. Bazgan et al. [Networks, 2019] conjectured that Length-Bounded Cut admits a polynomial-time algorithm if the input graph G is a proper interval graph. We confirm this conjecture by providing a dynamic-programming based polynomial-time algorithm. Moreover, we strengthen the W[1]-hardness result of Dvořák and Knop [Algorithmica, 2018] for Length-Bounded Cut parameterized by pathwidth. Our reduction is shorter, and the target of the reduction has stronger structural properties. Consequently, we give W[1]-hardness for the combined parameter pathwidth and maximum degree of the input graph. Finally, we prove that Length-Bounded Cut is W[1]-hard for the feedback vertex number. Both our hardness results complement known XP algorithms.

## Subject Classification

##### ACM Subject Classification
• Theory of computation → Parameterized complexity and exact algorithms
• Theory of computation → Dynamic programming
• Mathematics of computing → Graph algorithms
• Mathematics of computing → Combinatorial optimization
##### Keywords
• Edge-disjoint paths
• pathwidth
• feedback vertex number

## Metrics

• Access Statistics
• Total Accesses (updated on a weekly basis)
0

## References

1. Jiří Adámek and Václav Koubek. Remarks on flows in network with short paths. Comment. Math. Univ. Carolinae, 12:661-667, 1971.
2. Georg Baier, Thomas Erlebach, Alexander Hall, Ekkehard Köhler, Petr Kolman, Ondřej Pangrác, Heiko Schilling, and Martin Skutella. Length-bounded cuts and flows. ACM Trans. Algorithms, 7(1):4:1-4:27, 2010.
3. Cristina Bazgan, Till Fluschnik, André Nichterlein, Rolf Niedermeier, and Maximilian Stahlberg. A more fine-grained complexity analysis of finding the most vital edges for undirected shortest paths. Networks, 73(1):23-37, 2019.
4. Matthias Bentert, Klaus Heeger, and Dusan Knop. Length-bounded cuts: Proper interval graphs and structural parameters. CoRR, abs/1910.03409, 2019. URL: http://arxiv.org/abs/1910.03409.
5. Andreas Brandstädt, Van Bang Le, and Jeremy P. Spinrad. Graph Classes: A Survey. Philadelphia, PA: SIAM, 1999.
6. Jianer Chen, Benny Chor, Mike Fellows, Xiuzhen Huang, David W. Juedes, Iyad A. Kanj, and Ge Xia. Tight lower bounds for certain parameterized np-hard problems. Inf. Comput., 201(2):216-231, 2005.
7. Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
8. Yefim Dinitz. Dinitz' algorithm: The original version and Even’s version. In Theoretical Computer Science, Essays in Memory of Shimon Even, pages 218-240, 2006.
9. Pavel Dvořák and Dušan Knop. Parameterized complexity of length-bounded cuts and multicuts. Algorithmica, 80(12):3597-3617, 2018.
10. Till Fluschnik, Danny Hermelin, André Nichterlein, and Rolf Niedermeier. Fractals for kernelization lower bounds. SIAM J. Discrete Math., 32(1):656-681, 2018.
11. Lester Randolph Ford and Delbert Ray Fulkerson. Maximal flow through a network. Canadian Journal of Mathematics, 8:399–404, 1956.
12. Petr A. Golovach and Dimitrios M. Thilikos. Paths of bounded length and their cuts: Parameterized complexity and algorithms. Discrete Optimization, 8(1):72-86, 2011.
13. Luís Gouveia, Pedro Patrício, and Amaro de Sousa. Hop-constrained node survivable network design: An application to mpls over wdm. Networks and Spatial Economics, 8(1):3-21, March 2008. URL: https://doi.org/10.1007/s11067-007-9038-3.
14. David Huygens, Martine Labbé, A. Ridha Mahjoub, and Pierre Pesneau. The two-edge connected hop-constrained network design problem: Valid inequalities and branch-and-cut. Networks, 49(1):116-133, 2007. URL: https://doi.org/10.1002/net.20146.
15. David Huygens and A. Ridha Mahjoub. Integer programming formulations for the two 4-hop-constrained paths problem. Networks, 49(2):135-144, 2007. URL: https://doi.org/10.1002/net.20147.
16. Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-sat. J. Comput. Syst. Sci., 62(2):367-375, 2001.
17. Petr Kolman. On algorithms employing treewidth for l-bounded cut problems. J. Graph Algorithms Appl., 22(2):177-191, 2018.
18. Petr Kolman and Christian Scheideler. Improved bounds for the unsplittable flow problem. J. Algorithms, 61(1):20-44, 2006.
19. Ali Ridha Mahjoub and S. Thomas McCormick. Max flow and min cut with bounded-length paths: complexity, algorithms, and approximation. Math. Program., 124(1-2):271-284, 2010.
20. Vishv M. Malhotra, M. Pramodh Kumar, and S. N. Maheshwari. An O(|V|³) algorithm for finding maximum flows in networks. Inf. Process. Lett., 7(6):277-278, 1978.
21. Alexander Schrijver. Combinatorial optimization: polyhedra and efficiency, volume 24. Springer Science & Business Media, 2003.
X

Feedback for Dagstuhl Publishing