Let F be a set of n objects in the plane and let 𝒢^{×}(F) be its intersection graph. A balanced clique-based separator of 𝒢^{×}(F) is a set 𝒮 consisting of cliques whose removal partitions 𝒢^{×}(F) into components of size at most δ n, for some fixed constant δ < 1. The weight of a clique-based separator is defined as ∑_{C ∈ 𝒮}log (|C|+1). Recently De Berg et al. (SICOMP 2020) proved that if S consists of convex fat objects, then 𝒢^{×}(F) admits a balanced clique-based separator of weight O(√n). We extend this result in several directions, obtaining the following results. - Map graphs admit a balanced clique-based separator of weight O(√n), which is tight in the worst case. - Intersection graphs of pseudo-disks admit a balanced clique-based separator of weight O(n^{2/3} log n). If the pseudo-disks are polygonal and of total complexity O(n) then the weight of the separator improves to O(√n log n). - Intersection graphs of geodesic disks inside a simple polygon admit a balanced clique-based separator of weight O(n^{2/3} log n). - Visibility-restricted unit-disk graphs in a polygonal domain with r reflex vertices admit a balanced clique-based separator of weight O(√n + r log(n/r)), which is tight in the worst case. These results immediately imply sub-exponential algorithms for MAXIMUM INDEPENDENT SET (and, hence, VERTEX COVER), for FEEDBACK VERTEX SET, and for q-Coloring for constant q in these graph classes.
@InProceedings{deberg_et_al:LIPIcs.ISAAC.2021.22, author = {de Berg, Mark and Kisfaludi-Bak, S\'{a}ndor and Monemizadeh, Morteza and Theocharous, Leonidas}, title = {{Clique-Based Separators for Geometric Intersection Graphs}}, booktitle = {32nd International Symposium on Algorithms and Computation (ISAAC 2021)}, pages = {22:1--22:15}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-214-3}, ISSN = {1868-8969}, year = {2021}, volume = {212}, editor = {Ahn, Hee-Kap and Sadakane, Kunihiko}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2021.22}, URN = {urn:nbn:de:0030-drops-154556}, doi = {10.4230/LIPIcs.ISAAC.2021.22}, annote = {Keywords: Computational geometry, intersection graphs, separator theorems} }
Feedback for Dagstuhl Publishing