Minimum Plane Bichromatic Spanning Trees

Authors Hugo A. Akitaya , Ahmad Biniaz, Erik D. Demaine , Linda Kleist , Frederick Stock, Csaba D. Tóth



PDF
Thumbnail PDF

File

LIPIcs.ISAAC.2024.4.pdf
  • Filesize: 0.85 MB
  • 14 pages

Document Identifiers

Author Details

Hugo A. Akitaya
  • Miner School of Computer & Information Sciences, University of Massachusetts, Lowell, MA, USA
Ahmad Biniaz
  • School of Computer Science, University of Windsor, Canada
Erik D. Demaine
  • Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, Cambridge, MA, USA
Linda Kleist
  • Institute of Computer Science, Universität Potsdam, Germany
Frederick Stock
  • Miner School of Computer & Information Sciences, University of Massachusetts, Lowell, MA, USA
Csaba D. Tóth
  • Department of Mathematics, California State University Northridge, Los Angeles, CA, USA
  • Department of Computer Science, Tufts University, Medford, MA, USA

Acknowledgements

This work was initiated at the Eleventh Annual Workshop on Geometry and Graphs, held at the Bellairs Research Institute in Holetown, Barbados in March 2024. The authors thank the organizers and the participants.

Cite As Get BibTex

Hugo A. Akitaya, Ahmad Biniaz, Erik D. Demaine, Linda Kleist, Frederick Stock, and Csaba D. Tóth. Minimum Plane Bichromatic Spanning Trees. In 35th International Symposium on Algorithms and Computation (ISAAC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 322, pp. 4:1-4:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024) https://doi.org/10.4230/LIPIcs.ISAAC.2024.4

Abstract

For a set of red and blue points in the plane, a minimum bichromatic spanning tree (MinBST) is a shortest spanning tree of the points such that every edge has a red and a blue endpoint. A MinBST can be computed in O(n log n) time where n is the number of points. In contrast to the standard Euclidean MST, which is always plane (noncrossing), a MinBST may have edges that cross each other. However, we prove that a MinBST is quasi-plane, that is, it does not contain three pairwise crossing edges, and we determine the maximum number of crossings.
Moreover, we study the problem of finding a minimum plane bichromatic spanning tree (MinPBST) which is a shortest bichromatic spanning tree with pairwise noncrossing edges. This problem is known to be NP-hard. The previous best approximation algorithm, due to Borgelt et al. (2009), has a ratio of O(√n). It is also known that the optimum solution can be computed in polynomial time in some special cases, for instance, when the points are in convex position, collinear, semi-collinear, or when one color class has constant size. We present an O(log n)-factor approximation algorithm for the general case.

Subject Classification

ACM Subject Classification
  • Theory of computation → Computational geometry
Keywords
  • Bichromatic Spanning Tree
  • Minimum Spanning Tree
  • Plane Tree

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Manuel Abellanas, Jesus García-Lopez, Gregorio Hernández-Peñalver, Marc Noy, and Pedro A. Ramos. Bipartite embeddings of trees in the plane. Discret. Appl. Math., 93(2-3):141-148, 1999. URL: https://doi.org/10.1016/S0166-218X(99)00042-6.
  2. A. Karim Abu-Affash, Sujoy Bhore, Paz Carmi, and Joseph S. B. Mitchell. Planar bichromatic bottleneck spanning trees. J. Comput. Geom., 12(1):109-127, 2021. URL: https://doi.org/10.20382/JOCG.V12I1A5.
  3. Eyal Ackerman. On the maximum number of edges in topological graphs with no four pairwise crossing edges. Discret. Comput. Geom., 41(3):365-375, 2009. URL: https://doi.org/10.1007/S00454-009-9143-9.
  4. Pankaj K. Agarwal. Partitioning arrangements of lines I: An efficient deterministic algorithm. Discret. Comput. Geom., 5:449-483, 1990. URL: https://doi.org/10.1007/BF02187805.
  5. Pankaj K. Agarwal, Boris Aronov, János Pach, Richard Pollack, and Micha Sharir. Quasi-planar graphs have a linear number of edges. Combinatorica, 17(1):1-9, 1997. URL: https://doi.org/10.1007/BF01196127.
  6. Oswin Aichholzer, Johannes Obenaus, Joachim Orthaber, Rosna Paul, Patrick Schnider, Raphael Steiner, Tim Taubner, and Birgit Vogtenhuber. Edge partitions of complete geometric graphs. In Proc. 38th Symposium on Computational Geometry (SoCG), volume 224 of LIPIcs, pages 6:1-6:16. Schloss Dagstuhl, 2022. URL: https://doi.org/10.4230/LIPICS.SOCG.2022.6.
  7. Martin Aigner and Günter M. Ziegler. Turán’s graph theorem. In Proofs from THE BOOK, chapter 41, pages 285-289. Springer-Verlag, 6th edition, 2018. URL: https://doi.org/10.1007/978-3-662-57265-8_41.
  8. Jin Akiyama and Jorge Urrutia. Simple alternating path problem. Discret. Math., 84(1):101-103, 1990. URL: https://doi.org/10.1016/0012-365X(90)90276-N.
  9. Carlos Alegría, David Orden, Carlos Seara, and Jorge Urrutia. Separating bichromatic point sets in the plane by restricted orientation convex hulls. J. Glob. Optim., 85(4):1003-1036, 2023. URL: https://doi.org/10.1007/S10898-022-01238-9.
  10. Patrizio Angelini, Michael A. Bekos, Franz J. Brandenburg, Giordano Da Lozzo, Giuseppe Di Battista, Walter Didimo, Michael Hoffmann, Giuseppe Liotta, Fabrizio Montecchiani, Ignaz Rutter, and Csaba D. Tóth. Simple k-planar graphs are simple (k+1)-quasiplanar. J. Comb. Theory B, 142:1-35, 2020. URL: https://doi.org/10.1016/J.JCTB.2019.08.006.
  11. Bogdan Armaselu and Ovidiu Daescu. Dynamic minimum bichromatic separating circle. Theor. Comput. Sci., 774:133-142, 2019. URL: https://doi.org/10.1016/J.TCS.2016.11.036.
  12. Boris Aronov, Paul Erdős, Wayne Goddard, Daniel J. Kleitman, Michael Klugerman, János Pach, and Leonard J. Schulman. Crossing families. Combinatorica, 14(2):127-134, 1994. URL: https://doi.org/10.1007/BF01215345.
  13. Sanjeev Arora. Polynomial time approximation schemes for Euclidean traveling salesman and other geometric problems. J. ACM, 45(5):753-782, 1998. URL: https://doi.org/10.1145/290179.290180.
  14. Sanjeev Arora and Kevin L. Chang. Approximation schemes for degree-restricted MST and red-blue separation problems. Algorithmica, 40(3):189-210, 2004. URL: https://doi.org/10.1007/s00453-004-1103-4.
  15. Sayan Bandyapadhyay, Aritra Banik, Sujoy Bhore, and Martin Nöllenburg. Geometric planar networks on bichromatic collinear points. Theor. Comput. Sci., 895:124-136, 2021. URL: https://doi.org/10.1016/J.TCS.2021.09.035.
  16. Sergei Bespamyatnikh, David G. Kirkpatrick, and Jack Snoeyink. Generalizing ham sandwich cuts to equitable subdivisions. Discret. Comput. Geom., 24(4):605-622, 2000. URL: https://doi.org/10.1007/s004540010065.
  17. Ahmad Biniaz, Prosenjit Bose, Kimberly Crosbie, Jean-Lou De Carufel, David Eppstein, Anil Maheshwari, and Michiel H. M. Smid. Maximum plane trees in multipartite geometric graphs. Algorithmica, 81(4):1512-1534, 2019. URL: https://doi.org/10.1007/S00453-018-0482-X.
  18. Ahmad Biniaz, Prosenjit Bose, David Eppstein, Anil Maheshwari, Pat Morin, and Michiel H. M. Smid. Spanning trees in multipartite geometric graphs. Algorithmica, 80(11):3177-3191, 2018. URL: https://doi.org/10.1007/S00453-017-0375-4.
  19. Ahmad Biniaz, Prosenjit Bose, Anil Maheshwari, and Michiel H. M. Smid. Plane bichromatic trees of low degree. Discret. Comput. Geom., 59(4):864-885, 2018. URL: https://doi.org/10.1007/S00454-017-9881-Z.
  20. Ahmad Biniaz, Anil Maheshwari, and Michiel Smid. Euclidean maximum matchings in the plane - local to global. In Proceedings of the 17th International Symposium on Algorithms and Data Structures (WADS), volume 12808 of LNCS, pages 186-199. Springer, 2021. URL: https://doi.org/10.1007/978-3-030-83508-8_14.
  21. Magdalene G. Borgelt, Marc J. van Kreveld, Maarten Löffler, Jun Luo, Damian Merrick, Rodrigo I. Silveira, and Mostafa Vahedi. Planar bichromatic minimum spanning trees. J. Discrete Algorithms, 7(4):469-478, 2009. URL: https://doi.org/10.1016/J.JDA.2008.08.001.
  22. Otakar Borůvka. O jistém problému minimálním. Praca Moravske Prirodovedecke Spolecnosti, 3(3):37-58, 1926. Google Scholar
  23. Vasilis Capoyleas and János Pach. A Turán-type theorem on chords of a convex polygon. J. Comb. Theory B, 56(1):9-15, 1992. URL: https://doi.org/10.1016/0095-8956(92)90003-G.
  24. Timothy M. Chan. On the bichromatic k-set problem. ACM Trans. Algorithms, 6(4):62:1-62:20, 2010. URL: https://doi.org/10.1145/1824777.1824782.
  25. Timothy M. Chan and Bryan T. Wilkinson. Bichromatic line segment intersection counting in O(n √log n) time. In Proceedings of the 23rd Annual Canadian Conference on Computational Geometry (CCCG), Toronto, ON, 2011. URL: https://cccg.ca/proceedings/2011/papers/paper83.pdf.
  26. Mark de Berg, Otfried Cheong, Marc van Kreveld, and Mark Overmars. Quadtrees. In Computational Geometry: Algorithms and Applications, chapter 14, pages 307-322. Springer, Berlin, 2008. URL: https://doi.org/10.1007/978-3-540-77974-2_14.
  27. Erik D. Demaine, Jeff Erickson, Ferran Hurtado, John Iacono, Stefan Langerman, Henk Meijer, Mark H. Overmars, and Sue Whitesides. Separating point sets in polygonal environments. Int. J. Comp. Geom. Appl., 15(4):403-420, 2005. URL: https://doi.org/10.1142/S0218195905001762.
  28. Jacob Fox, János Pach, and Andrew Suk. Quasiplanar graphs, string graphs, and the Erdős-Gallai problem. In Proceedings of the 30th International Symposium on Graph Drawing and Network Visualization (GD), pages 219-231, 2022. URL: https://doi.org/10.1007/978-3-031-22203-0_16.
  29. Magdalene Grantson, Henk Meijer, and David Rappaport. Bi-chromatic minimum spanning trees. In Proceedings of the 21st European Workshop on Computational Geometry (EwCG), pages 199-202, Eindhoven, 2005. URL: https://www.win.tue.nl/EWCG2005/Proceedings/51.pdf.
  30. John Hershberger and Subhash Suri. Applications of a semi-dynamic convex hull algorithm. BIT, 32(2):249-267, 1992. URL: https://doi.org/10.1007/BF01994880.
  31. Michael Hoffmann, Bettina Speckmann, and Csaba D. Tóth. Pointed binary encompassing trees: Simple and optimal. Comput. Geom., 43(1):35-41, 2010. URL: https://doi.org/10.1016/j.comgeo.2006.12.005.
  32. Michael Hoffmann and Csaba D. Tóth. Vertex-colored encompassing graphs. Graphs and Combinatorics, 30(4):933-947, 2014. URL: https://doi.org/10.1007/s00373-013-1320-1.
  33. Ferran Hurtado, Mikio Kano, David Rappaport, and Csaba D. Tóth. Encompassing colored planar straight line graphs. Comput. Geom., 39(1):14-23, 2008. URL: https://doi.org/10.1016/J.COMGEO.2007.05.006.
  34. Atsushi Kaneko. On the maximum degree of bipartite embeddings of trees in the plane. In Discrete and Computational Geometry (JCDCG), volume 1763 of LNCS, pages 166-171, Heidelberg, 1998. Springer. URL: https://doi.org/10.1007/978-3-540-46515-7_13.
  35. Atsushi Kaneko and Mikio Kano. Discrete geometry on red and blue points in the plane — a survey. In Boris Aronov, Saugata Basu, János Pach, and Micha Sharir, editors, Discrete and Computational Geometry, volume 25 of Algorithms and Combinatorics, pages 551-570. Springer Berlin Heidelberg, 2003. URL: https://doi.org/10.1007/978-3-642-55566-4_25.
  36. Mikio Kano, Kazuhiro Suzuki, and Miyuki Uno. Properly colored geometric matchings and 3-trees without crossings on multicolored points in the plane. In Discrete and Computational Geometry and Graphs (JCDCGG), LNCS, pages 96-111, Cham, 2013. Springer. URL: https://doi.org/10.1007/978-3-319-13287-7_9.
  37. Joseph B. Kruskal. On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical Society, 7(1):48-50, 1956. URL: https://doi.org/10.1090/S0002-9939-1956-0078686-7.
  38. Harry G. Mairson and Jorge Stolfi. Reporting and counting intersections between two sets of line segments. In Rae A. Earnshaw, editor, Theoretical Foundations of Computer Graphics and CAD, volume 40 of NATO ASI Series, pages 307-325. Springer, Heidelberg, 1988. URL: https://doi.org/10.1007/978-3-642-83539-1_11.
  39. János Pach, Farhad Shahrokhi, and Mario Szegedy. Applications of the crossing number. Algorithmica, 16(1):111-117, 1996. URL: https://doi.org/10.1007/BF02086610.
  40. János Pach, Natan Rubin, and Gábor Tardos. Planar point sets determine many pairwise crossing segments. Advances in Mathematics, 386:107779, 2021. URL: https://doi.org/10.1016/j.aim.2021.107779.
  41. Robert C. Prim. Shortest connection networks and some generalizations. Bell System Technical Journal, 36, 1957. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail