Hardness Amplification for Dynamic Binary Search Trees

Authors Shunhua Jiang , Victor Lecomte , Omri Weinstein , Sorrachai Yingchareonthawornchai



PDF
Thumbnail PDF

File

LIPIcs.ISAAC.2024.42.pdf
  • Filesize: 0.86 MB
  • 19 pages

Document Identifiers

Author Details

Shunhua Jiang
  • Columbia University, New York, NY, USA
Victor Lecomte
  • Stanford University, CA, USA
Omri Weinstein
  • The Hebrew University of Jerusalem, Israel
Sorrachai Yingchareonthawornchai
  • The Hebrew University of Jerusalem, Israel

Acknowledgements

This work was done in part while the authors (SJ, OW, SY) were visiting the Simons Institute for the Theory of Computing, UC Berkeley.

Cite As Get BibTex

Shunhua Jiang, Victor Lecomte, Omri Weinstein, and Sorrachai Yingchareonthawornchai. Hardness Amplification for Dynamic Binary Search Trees. In 35th International Symposium on Algorithms and Computation (ISAAC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 322, pp. 42:1-42:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024) https://doi.org/10.4230/LIPIcs.ISAAC.2024.42

Abstract

We prove direct-sum theorems for Wilber’s two lower bounds [Wilber, FOCS'86] on the cost of access sequences in the binary search tree (BST) model. These bounds are central to the question of dynamic optimality [Sleator and Tarjan, JACM'85]: the Alternation bound is the only bound to have yielded online BST algorithms beating log n competitive ratio, while the Funnel bound has repeatedly been conjectured to exactly characterize the cost of executing an access sequence using the optimal tree [Wilber, FOCS'86, Kozma'16], and has been explicitly linked to splay trees [Levy and Tarjan, SODA'19]. Previously, the direct-sum theorem for the Alternation bound was known only when approximation was allowed [Chalermsook, Chuzhoy and Saranurak, APPROX'20, ToC'24]. 
We use these direct-sum theorems to amplify the sequences from [Lecomte and Weinstein, ESA'20] that separate between Wilber’s Alternation and Funnel bounds, increasing the Alternation and Funnel bounds while optimally maintaining the separation. As a corollary, we show that Tango trees [Demaine et al., FOCS'04] are optimal among any BST algorithms that charge their costs to the Alternation bound. This is true for any value of the Alternation bound, even values for which Tango trees achieve a competitive ratio of o(log log n) instead of the default O(log log n). Previously, the optimality of Tango trees was shown only for a limited range of Alternation bound [Lecomte and Weinstein, ESA'20].

Subject Classification

ACM Subject Classification
  • Theory of computation → Data structures design and analysis
  • Theory of computation → Online algorithms
Keywords
  • Data Structures
  • Amortized Analysis

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Brian Allen and Ian Munro. Self-organizing binary search trees. J. ACM, 25(4):526-535, October 1978. URL: https://doi.org/10.1145/322092.322094.
  2. Boaz Barak, Mark Braverman, Xi Chen, and Anup Rao. Direct sums in randomized communication complexity. Electron. Colloquium Comput. Complex., TR09-044, 2009. URL: https://eccc.weizmann.ac.il/report/2009/044, URL: https://arxiv.org/abs/TR09-044.
  3. Benjamin Aram Berendsohn, László Kozma, and Michal Opler. Optimization with pattern-avoiding input. CoRR, abs/2310.04236, 2023. URL: https://doi.org/10.48550/arXiv.2310.04236.
  4. Guy E. Blelloch and Magdalen Dobson. The geometry of tree-based sorting. In ICALP, volume 261 of LIPIcs, pages 26:1-26:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023. URL: https://doi.org/10.4230/LIPICS.ICALP.2023.26.
  5. Prosenjit Bose, Karim Douïeb, Vida Dujmovic, and Rolf Fagerberg. An O(log log n)-competitive binary search tree with optimal worst-case access times. In Algorithm Theory - SWAT 2010, 12th Scandinavian Symposium and Workshops on Algorithm Theory, Bergen, Norway, June 21-23, 2010. Proceedings, pages 38-49, 2010. URL: https://doi.org/10.1007/978-3-642-13731-0_5.
  6. Parinya Chalermsook, Julia Chuzhoy, and Thatchaphol Saranurak. Pinning down the strong wilber 1 bound for binary search trees. In APPROX-RANDOM, volume 176 of LIPIcs, pages 33:1-33:21. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. URL: https://doi.org/10.4230/LIPICS.APPROX/RANDOM.2020.33.
  7. Parinya Chalermsook, Mayank Goswami, László Kozma, Kurt Mehlhorn, and Thatchaphol Saranurak. Greedy is an almost optimal deque. In WADS, volume 9214 of Lecture Notes in Computer Science, pages 152-165. Springer, 2015. URL: https://doi.org/10.1007/978-3-319-21840-3_13.
  8. Parinya Chalermsook, Mayank Goswami, László Kozma, Kurt Mehlhorn, and Thatchaphol Saranurak. Pattern-avoiding access in binary search trees. In Venkatesan Guruswami, editor, IEEE 56th Annual Symposium on Foundations of Computer Science, FOCS 2015, Berkeley, CA, USA, 17-20 October, 2015, pages 410-423. IEEE Computer Society, 2015. URL: https://doi.org/10.1109/FOCS.2015.32.
  9. Parinya Chalermsook, Mayank Goswami, László Kozma, Kurt Mehlhorn, and Thatchaphol Saranurak. The landscape of bounds for binary search trees. arXiv preprint, 2016. URL: https://arxiv.org/abs/1603.04892.
  10. Parinya Chalermsook, Manoj Gupta, Wanchote Jiamjitrak, Nidia Obscura Acosta, Akash Pareek, and Sorrachai Yingchareonthawornchai. Improved pattern-avoidance bounds for greedy bsts via matrix decomposition. In SODA, pages 509-534. SIAM, 2023. URL: https://doi.org/10.1137/1.9781611977554.CH22.
  11. Parinya Chalermsook, Manoj Gupta, Wanchote Jiamjitrak, Akash Pareek, and Sorrachai Yingchareonthawornchai. The group access bounds for binary search trees. CoRR, abs/2312.15426, 2023. URL: https://doi.org/10.48550/arXiv.2312.15426.
  12. Parinya Chalermsook and Wanchote Po Jiamjitrak. New binary search tree bounds via geometric inversions. In ESA, volume 173 of LIPIcs, pages 28:1-28:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. URL: https://doi.org/10.4230/LIPICS.ESA.2020.28.
  13. Parinya Chalermsook, Seth Pettie, and Sorrachai Yingchareonthawornchai. Sorting pattern-avoiding permutations via 0-1 matrices forbidding product patterns. In SODA, pages 133-149. SIAM, 2024. URL: https://doi.org/10.1137/1.9781611977912.7.
  14. Richard Cole. On the dynamic finger conjecture for splay trees. part II: the proof. SIAM J. Comput., 30(1):44-85, 2000. URL: https://doi.org/10.1137/S009753979732699X.
  15. Erik D. Demaine, Dion Harmon, John Iacono, Daniel M. Kane, and Mihai Patrascu. The geometry of binary search trees. In Proceedings of the Twentieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2009, New York, NY, USA, January 4-6, 2009, pages 496-505, 2009. URL: http://dl.acm.org/citation.cfm?id=1496770.1496825, URL: https://doi.org/10.1137/1.9781611973068.55.
  16. Erik D. Demaine, Dion Harmon, John Iacono, and Mihai Patrascu. Dynamic optimality - almost. SIAM J. Comput., 37(1):240-251, 2007. URL: https://doi.org/10.1137/S0097539705447347.
  17. Jonathan Derryberry, Daniel Dominic Sleator, and Chengwen Chris Wang. A lower bound framework for binary search trees with rotations. Technical report, 2005. Google Scholar
  18. Amr Elmasry. On the sequential access theorem and deque conjecture for splay trees. Theor. Comput. Sci., 314(3):459-466, 2004. URL: https://doi.org/10.1016/J.TCS.2004.01.019.
  19. Kyle Fox. Upper bounds for maximally greedy binary search trees. In WADS, volume 6844 of Lecture Notes in Computer Science, pages 411-422. Springer, 2011. URL: https://doi.org/10.1007/978-3-642-22300-6_35.
  20. Oded Goldreich, Noam Nisan, and Avi Wigderson. On yao’s xor-lemma. In Oded Goldreich, editor, Studies in Complexity and Cryptography. Miscellanea on the Interplay between Randomness and Computation - In Collaboration with Lidor Avigad, Mihir Bellare, Zvika Brakerski, Shafi Goldwasser, Shai Halevi, Tali Kaufman, Leonid Levin, Noam Nisan, Dana Ron, Madhu Sudan, Luca Trevisan, Salil Vadhan, Avi Wigderson, David Zuckerman, volume 6650 of Lecture Notes in Computer Science, pages 273-301. Springer, 2011. URL: https://doi.org/10.1007/978-3-642-22670-0_23.
  21. Navin Goyal and Manoj Gupta. Better analysis of greedy binary search tree on decomposable sequences. Theor. Comput. Sci., 776:19-42, 2019. URL: https://doi.org/10.1016/J.TCS.2018.12.021.
  22. John Iacono. In pursuit of the dynamic optimality conjecture. In Space-Efficient Data Structures, Streams, and Algorithms - Papers in Honor of J. Ian Munro on the Occasion of His 66th Birthday, pages 236-250, 2013. URL: https://doi.org/10.1007/978-3-642-40273-9_16.
  23. Mauricio Karchmer, Ran Raz, and Avi Wigderson. Super-logarithmic depth lower bounds via the direct sum in communication complexity. Comput. Complex., 5(3/4):191-204, 1995. URL: https://doi.org/10.1007/BF01206317.
  24. Alexander Knop, Shachar Lovett, Sam McGuire, and Weiqiang Yuan. Log-rank and lifting for and-functions. In Samir Khuller and Virginia Vassilevska Williams, editors, STOC '21: 53rd Annual ACM SIGACT Symposium on Theory of Computing, Virtual Event, Italy, June 21-25, 2021, pages 197-208. ACM, 2021. URL: https://doi.org/10.1145/3406325.3450999.
  25. László Kozma. Binary search trees, rectangles and patterns, 2016. Google Scholar
  26. László Kozma and Thatchaphol Saranurak. Smooth heaps and a dual view of self-adjusting data structures. In Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2018, Los Angeles, CA, USA, June 25-29, 2018, pages 801-814, 2018. URL: https://doi.org/10.1145/3188745.3188864.
  27. Victor Lecomte and Omri Weinstein. Settling the relationship between wilber’s bounds for dynamic optimality. In ESA, volume 173 of LIPIcs, pages 68:1-68:21. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. URL: https://doi.org/10.4230/LIPICS.ESA.2020.68.
  28. Troy Lee, Adi Shraibman, and Robert Spalek. A direct product theorem for discrepancy. In CCC, pages 71-80. IEEE Computer Society, 2008. URL: https://doi.org/10.1109/CCC.2008.25.
  29. Caleb C. Levy and Robert E. Tarjan. A new path from splay to dynamic optimality. In Timothy M. Chan, editor, Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2019, San Diego, California, USA, January 6-9, 2019, pages 1311-1330. SIAM, 2019. URL: https://doi.org/10.1137/1.9781611975482.80.
  30. Joan Marie Lucas. Canonical forms for competitive binary search tree algorithms. Rutgers University, Department of Computer Science, Laboratory for Computer Science Research, 1988. Google Scholar
  31. J. Ian Munro. On the competitiveness of linear search. In Mike Paterson, editor, Algorithms - ESA 2000, 8th Annual European Symposium, Saarbrücken, Germany, September 5-8, 2000, Proceedings, volume 1879 of Lecture Notes in Computer Science, pages 338-345. Springer, 2000. URL: https://doi.org/10.1007/3-540-45253-2_31.
  32. Seth Pettie. Splay trees, davenport-schinzel sequences, and the deque conjecture. In Proceedings of the nineteenth annual ACM-SIAM symposium on Discrete algorithms, pages 1115-1124, 2008. URL: http://dl.acm.org/citation.cfm?id=1347082.1347204.
  33. Mihai Puatracscu and Mikkel Thorup. Higher lower bounds for near-neighbor and further rich problems. SIAM J. Comput., 39(2):730-741, 2009. URL: https://doi.org/10.1137/070684859.
  34. Ran Raz. A counterexample to strong parallel repetition. SIAM J. Comput., 40(3):771-777, 2011. URL: https://doi.org/10.1137/090747270.
  35. Ran Raz and Pierre McKenzie. Separation of the monotone NC hierarchy. Comb., 19(3):403-435, 1999. URL: https://doi.org/10.1007/S004930050062.
  36. Yaniv Sadeh and Haim Kaplan. Dynamic binary search trees: Improved lower bounds for the greedy-future algorithm. In STACS, volume 254 of LIPIcs, pages 53:1-53:21. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023. URL: https://doi.org/10.4230/LIPICS.STACS.2023.53.
  37. Ronen Shaltiel. Towards proving strong direct product theorems. In Proceedings of the 16th Annual Conference on Computational Complexity, CCC '01, page 107, USA, 2001. IEEE Computer Society. Google Scholar
  38. Alexander A. Sherstov. Strong direct product theorems for quantum communication and query complexity. SIAM J. Comput., 41(5):1122-1165, 2012. URL: https://doi.org/10.1137/110842661.
  39. Yaroslav Shitov. A counterexample to comon’s conjecture. SIAM J. Appl. Algebra Geom., 2(3):428-443, 2018. URL: https://doi.org/10.1137/17M1131970.
  40. Daniel Dominic Sleator and Robert Endre Tarjan. Self-adjusting binary search trees. J. ACM, 32(3):652-686, July 1985. URL: https://doi.org/10.1145/3828.3835.
  41. Rajamani Sundar. On the deque conjecture for the splay algorithm. Comb., 12(1):95-124, 1992. URL: https://doi.org/10.1007/BF01191208.
  42. Chengwen Chris Wang, Jonathan Derryberry, and Daniel Dominic Sleator. O(log log n)-competitive dynamic binary search trees. In Proceedings of the Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithm, SODA '06, pages 374-383, Philadelphia, PA, USA, 2006. Society for Industrial and Applied Mathematics. URL: http://dl.acm.org/citation.cfm?id=1109557.1109600.
  43. R. Wilber. Lower bounds for accessing binary search trees with rotations. SIAM J. Comput., 18(1):56-67, February 1989. URL: https://doi.org/10.1137/0218004.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail