Complexity Framework for Forbidden Subgraphs II: Edge Subdivision and the "H"-Graphs

Authors Vadim Lozin , Barnaby Martin , Sukanya Pandey , Daniël Paulusma , Mark Siggers , Siani Smith , Erik Jan van Leeuwen



PDF
Thumbnail PDF

File

LIPIcs.ISAAC.2024.47.pdf
  • Filesize: 0.89 MB
  • 18 pages

Document Identifiers

Author Details

Vadim Lozin
  • University of Warwick, Coventry, UK
Barnaby Martin
  • Durham University, UK
Sukanya Pandey
  • Utrecht University, The Netherlands
Daniël Paulusma
  • Durham University, UK
Mark Siggers
  • Kyungpook National University, Daegu, Republic of Korea
Siani Smith
  • University of Bristol, UK
  • Heilbronn Institute for Mathematical Research, Germany
Erik Jan van Leeuwen
  • Utrecht University, The Netherlands

Acknowledgements

We are grateful to Matthew Johnson, Jelle J. Oostveen and Hans Bodlaender for useful discussions.

Cite As Get BibTex

Vadim Lozin, Barnaby Martin, Sukanya Pandey, Daniël Paulusma, Mark Siggers, Siani Smith, and Erik Jan van Leeuwen. Complexity Framework for Forbidden Subgraphs II: Edge Subdivision and the "H"-Graphs. In 35th International Symposium on Algorithms and Computation (ISAAC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 322, pp. 47:1-47:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024) https://doi.org/10.4230/LIPIcs.ISAAC.2024.47

Abstract

For a fixed set H of graphs, a graph G is H-subgraph-free if G does not contain any H ∈ H as a (not necessarily induced) subgraph. A recent framework gives a complete classification on H-subgraph-free graphs (for finite sets H) for problems that are solvable in polynomial time on graph classes of bounded treewidth, NP-complete on subcubic graphs, and whose NP-hardness is preserved under edge subdivision. While a lot of problems satisfy these conditions, there are also many problems that do not satisfy all three conditions and for which the complexity in H-subgraph-free graphs is unknown. We study problems for which only the first two conditions of the framework hold (they are solvable in polynomial time on classes of bounded treewidth and NP-complete on subcubic graphs, but NP-hardness is not preserved under edge subdivision). In particular, we make inroads into the classification of the complexity of four such problems: Hamilton Cycle, k-Induced Disjoint Paths, C₅-Colouring and Star 3-Colouring. Although we do not complete the classifications, we show that the boundary between polynomial time and NP-complete differs among our problems and also from problems that do satisfy all three conditions of the framework, in particular when we forbid certain subdivisions of the "H"-graph (the graph that looks like the letter "H"). Hence, we exhibit a rich complexity landscape among problems for H-subgraph-free graph classes.

Subject Classification

ACM Subject Classification
  • Mathematics of computing → Graph theory
  • Theory of computation → Graph algorithms analysis
  • Theory of computation → Problems, reductions and completeness
Keywords
  • forbidden subgraph
  • complexity dichotomy
  • edge subdivision
  • treewidth

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Michael O. Albertson, Glenn G. Chappell, Henry A. Kierstead, André Kündgen, and Radhika Ramamurthi. Coloring with no 2-colored P₄’s. Electronic Journal of Combinatorics, 11, 2004. Google Scholar
  2. Vladimir E. Alekseev, Rodica Boliac, Dmitry V. Korobitsyn, and Vadim V. Lozin. NP-hard graph problems and boundary classes of graphs. Theoretical Computer Science, 389:219-236, 2007. URL: https://doi.org/10.1016/J.TCS.2007.09.013.
  3. Vladimir E. Alekseev and Dmitry V. Korobitsyn. Complexity of some problems on hereditary graph classes. Diskretnaya Matematika, 4:34-40, 1992. Google Scholar
  4. Stefan Arnborg and Andrzej Proskurowski. Linear time algorithms for NP-hard problems restricted to partial k-trees. Discrete Applied Mathematics, 23:11-24, 1989. URL: https://doi.org/10.1016/0166-218X(89)90031-0.
  5. Daniel Bienstock, Neil Robertson, Paul D. Seymour, and Robin Thomas. Quickly excluding a forest. Journal of Combinatoral Theory, Series B, 52:274-283, 1991. URL: https://doi.org/10.1016/0095-8956(91)90068-U.
  6. Hans L. Bodlaender, Tesshu Hanaka, Yasuaki Kobayashi, Yusuke Kobayashi, Yoshio Okamoto, Yota Otachi, and Tom C. van der Zanden. Subgraph isomorphism on graph classes that exclude a substructure. Algorithmica, 82:3566-3587, 2020. URL: https://doi.org/10.1007/S00453-020-00737-Z.
  7. Hans L. Bodlaender, Matthew Johnson, Barnaby Martin, Jelle J. Oostveen, Sukanya Pandey, Daniël Paulusma, Siani Smith, and Erik Jan van Leeuwen. Complexity framework for forbidden subgraphs IV: The Steiner Forest problem. Proc. IWOCA 2024, LNCS, 14764:206-217, 2024. URL: https://doi.org/10.1007/978-3-031-63021-7_16.
  8. Rodica Boliac and Vadim V. Lozin. On the clique-width of graphs in hereditary classes. Proc. ISAAC 2022, LNCS, 2518:44-54, 2002. URL: https://doi.org/10.1007/3-540-36136-7_5.
  9. Maria Chudnovsky, Shenwei Huang, Pawe ł Rzążewsk, Sophie Spirkl, and Mingxian Zhong. Complexity of C_k-coloring in hereditary classes of graphs. Proc. ESA 2019, LIPIcs, 144:31:1-31:15, 2019. URL: https://doi.org/10.4230/LIPICS.ESA.2019.31.
  10. Bruno Courcelle. The monadic second-order logic of graphs. I. Recognizable sets of finite graphs. Information and Computation, 85:12-75, 1990. URL: https://doi.org/10.1016/0890-5401(90)90043-H.
  11. David P. Dailey. Uniqueness of colorability and colorability of planar 4-regular graphs are NP-complete. Discrete Mathematics, 30:289-293, 1980. URL: https://doi.org/10.1016/0012-365X(80)90236-8.
  12. Rina Dechter and Judea Pearl. Tree clustering for constraint networks. Artificial Intelligence, 38:353-366, 1989. URL: https://doi.org/10.1016/0004-3702(89)90037-4.
  13. Tala Eagling-Vose, Barnaby Martin, Daniël Paulusma, and Siani Smith. Graph homomorphism, monotone classes and bounded pathwidth. Proc. CiE 2024, LNCS, 14773:233-251, 2024. URL: https://doi.org/10.1007/978-3-031-64309-5_19.
  14. Thomas Emden-Weinert, Stefan Hougardy, and Bernd Kreuter. Uniquely colourable graphs and the hardness of colouring graphs of large girth. Combinatorics, Probability & Computing, 7:375-386, 1998. URL: http://journals.cambridge.org/action/displayAbstract?aid=46667.
  15. Anna Galluccio, Pavol Hell, and Jaroslav Nešetřil. The complexity of H-colouring of bounded degree graphs. Discrete Mathematics, 222:101-109, 2000. URL: https://doi.org/10.1016/S0012-365X(00)00009-1.
  16. Alfred Geroldinger and Imre Z. Ruzsa. Combinatorial Number Theory and Additive Group Theory. Birkhäuser, 2009. Google Scholar
  17. Petr A. Golovach and Daniël Paulusma. List coloring in the absence of two subgraphs. Discrete Applied Mathematics, 166:123-130, 2014. URL: https://doi.org/10.1016/J.DAM.2013.10.010.
  18. Petr A. Golovach, Daniël Paulusma, and Bernard Ries. Coloring graphs characterized by a forbidden subgraph. Discrete Applied Mathematics, 180:101-110, 2015. URL: https://doi.org/10.1016/J.DAM.2014.08.008.
  19. Pavol Hell and Jaroslav Nesetril. On the complexity of H-coloring. Journal of Combinatorial Theory, Series B, 48:92-110, 1990. URL: https://doi.org/10.1016/0095-8956(90)90132-J.
  20. Matthew Johnson, Barnaby Martin, Jelle J. Oostveen, Sukanya Pandey, Daniël Paulusma, Siani Smith, and Erik Jan van Leeuwen. Complexity framework for forbidden subgraphs I: The framework. CoRR, 2211.12887, 2022. Google Scholar
  21. Matthew Johnson, Barnaby Martin, Sukanya Pandey, Daniël Paulusma, Siani Smith, and Erik Jan van Leeuwen. Complexity framework for forbidden subgraphs III: When problems are tractable on subcubic graphs. Proc. MFCS 2024, LIPIcs, 272:57:1-57:15, 2023. URL: https://doi.org/10.4230/LIPICS.MFCS.2023.57.
  22. Marcin Kamiński. Max-Cut and containment relations in graphs. Theoretical Computer Science, 438:89-95, 2012. URL: https://doi.org/10.1016/J.TCS.2012.02.036.
  23. Nicholas Korpelainen, Vadim V. Lozin, Dmitriy S. Malyshev, and Alexander Tiskin. Boundary properties of graphs for algorithmic graph problems. Theoretical Computer Science, 412:3545-3554, 2011. URL: https://doi.org/10.1016/J.TCS.2011.03.001.
  24. Benjamin Lévêque, David Y. Lin, Frédéric Maffray, and Nicolas Trotignon. Detecting induced subgraphs. Discrete Applied Mathematics, 157:3540-3551, 2009. URL: https://doi.org/10.1016/J.DAM.2009.02.015.
  25. Vadim V. Lozin. The hamiltonian cycle problem and monotone classes. Proceedings of IWOCA 2024, LNCS, 14764:460-471, 2024. URL: https://doi.org/10.1007/978-3-031-63021-7_35.
  26. Vadim V. Lozin and Igor Razgon. Tree-width dichotomy. European Journal of Combinatorics, 103:103517, 2022. URL: https://doi.org/10.1016/J.EJC.2022.103517.
  27. Augustine M. Moshi. Matching cutsets in graphs. Journal of Graph Theory, 13:527-536, 1989. URL: https://doi.org/10.1002/JGT.3190130502.
  28. Neil Robertson and Paul D. Seymour. Graph minors. III. Planar tree-width. Journal of Combinatorial Theory, Series B, 36:49-64, 1984. URL: https://doi.org/10.1016/0095-8956(84)90013-3.
  29. Neil Robertson and Paul D. Seymour. Graph minors. V. Excluding a planar graph. Journal of Combinatorial Theory, Series B, 41:92-114, 1986. URL: https://doi.org/10.1016/0095-8956(86)90030-4.
  30. Neil Robertson and Paul D. Seymour. Graph minors. XIII. The Disjoint Paths problem. Journal of Combinatorial Theory, Series B, 63:65-110, 1995. URL: https://doi.org/10.1006/JCTB.1995.1006.
  31. M. A. Shalu and Cyriac Antony. Star colouring of bounded degree graphs and regular graphs. Discrete Mathematics, 345:112850, 2022. URL: https://doi.org/10.1016/J.DISC.2022.112850.
  32. M. A. Shalu and Cyriac Antony. Hardness transitions and uniqueness of acyclic colouring. Discrete Applied Mathematics, 345:77-98, 2024. URL: https://doi.org/10.1016/J.DAM.2023.11.030.
  33. Yossi Shiloach. A polynomial solution to the undirected Two Paths problem. Journal of the ACM, 27:445-456, 1980. URL: https://doi.org/10.1145/322203.322207.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail