Does Subset Sum Admit Short Proofs?

Author Michał Włodarczyk



PDF
Thumbnail PDF

File

LIPIcs.ISAAC.2024.58.pdf
  • Filesize: 0.93 MB
  • 22 pages

Document Identifiers

Author Details

Michał Włodarczyk
  • University of Warsaw, Poland

Cite As Get BibTex

Michał Włodarczyk. Does Subset Sum Admit Short Proofs?. In 35th International Symposium on Algorithms and Computation (ISAAC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 322, pp. 58:1-58:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024) https://doi.org/10.4230/LIPIcs.ISAAC.2024.58

Abstract

We investigate the question whether Subset Sum can be solved by a polynomial-time algorithm with access to a certificate of length poly(k) where k is the maximal number of bits in an input number. In other words, can it be solved using only few nondeterministic bits?
This question has motivated us to initiate a systematic study of certification complexity of parameterized problems. Apart from Subset Sum, we examine problems related to integer linear programming, scheduling, and group theory. We reveal an equivalence class of problems sharing the same hardness with respect to having a polynomial certificate. These include Subset Sum and Boolean Linear Programming parameterized by the number of constraints. Secondly, we present new techniques for establishing lower bounds in this regime. In particular, we show that Subset Sum in permutation groups is at least as hard for nondeterministic computation as 3Coloring in bounded-pathwidth graphs.

Subject Classification

ACM Subject Classification
  • Theory of computation → Fixed parameter tractability
Keywords
  • subset sum
  • nondeterminism
  • fixed-parameter tractability

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Scott Aaronson. The complexity zoo, 2005. URL: https://cse.unl.edu/~cbourke/latex/ComplexityZoo.pdf.
  2. Amir Abboud, Karl Bringmann, Danny Hermelin, and Dvir Shabtay. Scheduling lower bounds via AND subset sum. In Artur Czumaj, Anuj Dawar, and Emanuela Merelli, editors, 47th International Colloquium on Automata, Languages, and Programming, ICALP 2020, July 8-11, 2020, Saarbrücken, Germany (Virtual Conference), volume 168 of LIPIcs, pages 4:1-4:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. URL: https://doi.org/10.4230/LIPICS.ICALP.2020.4.
  3. Amir Abboud, Karl Bringmann, Danny Hermelin, and Dvir Shabtay. SETH-based lower bounds for subset sum and bicriteria path. ACM Trans. Algorithms, 18(1):6:1-6:22, 2022. URL: https://doi.org/10.1145/3450524.
  4. Manindra Agrawal, Neeraj Kayal, and Nitin Saxena. PRIMES is in P. Annals of mathematics, pages 781-793, 2004. Google Scholar
  5. Eric Allender, Shiteng Chen, Tiancheng Lou, Periklis A. Papakonstantinou, and Bangsheng Tang. Width-parametrized SAT: time-space tradeoffs. Theory Comput., 10:297-339, 2014. URL: https://doi.org/10.4086/TOC.2014.V010A012.
  6. Fadi A. Aloul, Arathi Ramani, Igor L. Markov, and Karem A. Sakallah. Generic ILP versus specialized 0-1 ILP: an update. In Lawrence T. Pileggi and Andreas Kuehlmann, editors, Proceedings of the 2002 IEEE/ACM International Conference on Computer-aided Design, ICCAD 2002, San Jose, California, USA, November 10-14, 2002, pages 450-457. ACM / IEEE Computer Society, 2002. URL: https://doi.org/10.1145/774572.774638.
  7. Sanjeev Arora and Boaz Barak. Computational complexity: a modern approach. Cambridge University Press, 2009. Google Scholar
  8. Per Austrin, Petteri Kaski, Mikko Koivisto, and Jesper Nederlof. Dense subset sum may be the hardest. In Nicolas Ollinger and Heribert Vollmer, editors, 33rd Symposium on Theoretical Aspects of Computer Science, STACS 2016, February 17-20, 2016, Orléans, France, volume 47 of LIPIcs, pages 13:1-13:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016. URL: https://doi.org/10.4230/LIPICS.STACS.2016.13.
  9. Kyriakos Axiotis, Arturs Backurs, Karl Bringmann, Ce Jin, Vasileios Nakos, Christos Tzamos, and Hongxun Wu. Fast and simple modular subset sum. In Hung Viet Le and Valerie King, editors, 4th Symposium on Simplicity in Algorithms, SOSA 2021, Virtual Conference, January 11-12, 2021, pages 57-67. SIAM, 2021. URL: https://doi.org/10.1137/1.9781611976496.6.
  10. Kyriakos Axiotis, Arturs Backurs, Ce Jin, Christos Tzamos, and Hongxun Wu. Fast modular subset sum using linear sketching. In Timothy M. Chan, editor, Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2019, San Diego, California, USA, January 6-9, 2019, pages 58-69. SIAM, 2019. URL: https://doi.org/10.1137/1.9781611975482.4.
  11. Richard Bellman. Dynamic programming. Princeton University Press, Princeton, NJ, USA, 1:3-25, 1958. Google Scholar
  12. Sebastian Berndt, Matthias Mnich, and Tobias Stamm. New support size bounds and proximity bounds for integer linear programming. In International Conference on Current Trends in Theory and Practice of Computer Science, pages 82-95. Springer, 2024. URL: https://doi.org/10.1007/978-3-031-52113-3_6.
  13. Yael Berstein and Shmuel Onn. The Graver complexity of integer programming. Annals of Combinatorics, 13:289-296, 2009. Google Scholar
  14. Hans-Joachim Böckenhauer, Dennis Komm, Rastislav Královič, Richard Královič, and Tobias Mömke. Online algorithms with advice: The tape model. Information and Computation, 254:59-83, 2017. URL: https://doi.org/10.1016/J.IC.2017.03.001.
  15. Hans L. Bodlaender, Carla Groenland, Hugo Jacob, Lars Jaffke, and Paloma T. Lima. XNLP-completeness for parameterized problems on graphs with a linear structure. In Holger Dell and Jesper Nederlof, editors, 17th International Symposium on Parameterized and Exact Computation, IPEC 2022, September 7-9, 2022, Potsdam, Germany, volume 249 of LIPIcs, pages 8:1-8:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. URL: https://doi.org/10.4230/LIPICS.IPEC.2022.8.
  16. Hans L. Bodlaender, Carla Groenland, Jesper Nederlof, and Céline M. F. Swennenhuis. Parameterized problems complete for nondeterministic FPT time and logarithmic space. In 62nd IEEE Annual Symposium on Foundations of Computer Science, FOCS 2021, Denver, CO, USA, February 7-10, 2022, pages 193-204. IEEE, 2021. URL: https://doi.org/10.1109/FOCS52979.2021.00027.
  17. Hans L. Bodlaender, Isja Mannens, Jelle J. Oostveen, Sukanya Pandey, and Erik Jan van Leeuwen. The parameterised complexity of integer multicommodity flow. In Neeldhara Misra and Magnus Wahlström, editors, 18th International Symposium on Parameterized and Exact Computation, IPEC 2023, September 6-8, 2023, Amsterdam, The Netherlands, volume 285 of LIPIcs, pages 6:1-6:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023. URL: https://doi.org/10.4230/LIPICS.IPEC.2023.6.
  18. Joan Boyar, Lene M Favrholdt, Christian Kudahl, Kim S Larsen, and Jesper W Mikkelsen. Online algorithms with advice: A survey. ACM Computing Surveys (CSUR), 50(2):1-34, 2017. URL: https://doi.org/10.1145/3056461.
  19. Karl Bringmann. A near-linear pseudopolynomial time algorithm for subset sum. In Philip N. Klein, editor, Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2017, Barcelona, Spain, Hotel Porta Fira, January 16-19, pages 1073-1084. SIAM, 2017. URL: https://doi.org/10.1137/1.9781611974782.69.
  20. Karl Bringmann, Nick Fischer, Danny Hermelin, Dvir Shabtay, and Philip Wellnitz. Faster minimization of tardy processing time on a single machine. Algorithmica, 84(5):1341-1356, 2022. URL: https://doi.org/10.1007/S00453-022-00928-W.
  21. Karl Bringmann and Vasileios Nakos. A fine-grained perspective on approximating subset sum and partition. In Dániel Marx, editor, Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms, SODA 2021, Virtual Conference, January 10 - 13, 2021, pages 1797-1815. SIAM, 2021. URL: https://doi.org/10.1137/1.9781611976465.108.
  22. Karl Bringmann and Philip Wellnitz. On near-linear-time algorithms for dense subset sum. In Dániel Marx, editor, Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms, SODA 2021, Virtual Conference, January 10 - 13, 2021, pages 1777-1796. SIAM, 2021. URL: https://doi.org/10.1137/1.9781611976465.107.
  23. Sam Buss and Jakob Nordström. Proof complexity and SAT solving. In Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh, editors, Handbook of Satisfiability - Second Edition, volume 336 of Frontiers in Artificial Intelligence and Applications, pages 233-350. IOS Press, 2021. URL: https://doi.org/10.3233/FAIA200990.
  24. Jean Cardinal and John Iacono. Modular subset sum, dynamic strings, and zero-sum sets. In Hung Viet Le and Valerie King, editors, 4th Symposium on Simplicity in Algorithms, SOSA 2021, Virtual Conference, January 11-12, 2021, pages 45-56. SIAM, 2021. URL: https://doi.org/10.1137/1.9781611976496.5.
  25. Marco L. Carmosino, Jiawei Gao, Russell Impagliazzo, Ivan Mihajlin, Ramamohan Paturi, and Stefan Schneider. Nondeterministic extensions of the strong exponential time hypothesis and consequences for non-reducibility. In Madhu Sudan, editor, Proceedings of the 2016 ACM Conference on Innovations in Theoretical Computer Science, Cambridge, MA, USA, January 14-16, 2016, pages 261-270. ACM, 2016. URL: https://doi.org/10.1145/2840728.2840746.
  26. Lin Chen, Jiayi Lian, Yuchen Mao, and Guochuan Zhang. Approximating partition in near-linear time. In Bojan Mohar, Igor Shinkar, and Ryan O'Donnell, editors, Proceedings of the 56th Annual ACM Symposium on Theory of Computing, STOC 2024, Vancouver, BC, Canada, June 24-28, 2024, pages 307-318. ACM, 2024. URL: https://doi.org/10.1145/3618260.3649727.
  27. Stephen Cook and Phuong Nguyen. Logical foundations of proof complexity, volume 11. Cambridge University Press Cambridge, 2010. Google Scholar
  28. Stephen A. Cook and Robert A. Reckhow. The relative efficiency of propositional proof systems. Journal of Symbolic Logic, 44(1):36-50, 1979. URL: https://doi.org/10.2307/2273702.
  29. Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015. URL: https://doi.org/10.1007/978-3-319-21275-3.
  30. Marek Cygan, Marcin Mucha, Karol Węgrzycki, and Michał Włodarczyk. On problems equivalent to (min, +)-convolution. ACM Trans. Algorithms, 15(1):14:1-14:25, 2019. URL: https://doi.org/10.1145/3293465.
  31. Stefan S. Dantchev, Barnaby Martin, and Stefan Szeider. Parameterized proof complexity. Comput. Complex., 20(1):51-85, 2011. URL: https://doi.org/10.1007/S00037-010-0001-1.
  32. Evgeny Dantsin and Edward A. Hirsch. Satisfiability certificates verifiable in subexponential time. In Karem A. Sakallah and Laurent Simon, editors, Theory and Applications of Satisfiability Testing - SAT 2011, pages 19-32, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg. URL: https://doi.org/10.1007/978-3-642-21581-0_4.
  33. Holger Dell. AND-compression of NP-complete problems: Streamlined proof and minor observations. Algorithmica, 75(2):403-423, 2016. URL: https://doi.org/10.1007/S00453-015-0110-Y.
  34. Antoine Deza, Asaf Levin, Syed Mohammad Meesum, and Shmuel Onn. Hypergraphic degree sequences are hard. Bull. EATCS, 127, 2019. URL: http://bulletin.eatcs.org/index.php/beatcs/article/view/573/572.
  35. Stefan Dobrev, Rastislav Královič, and Dana Pardubská. Measuring the problem-relevant information in input. RAIRO-Theoretical Informatics and Applications, 43(3):585-613, 2009. URL: https://doi.org/10.1051/ITA/2009012.
  36. Michael Dom, Daniel Lokshtanov, and Saket Saurabh. Kernelization lower bounds through colors and IDs. ACM Trans. Algorithms, 11(2):13:1-13:20, 2014. URL: https://doi.org/10.1145/2650261.
  37. Andrew Drucker. Nondeterministic direct product reductions and the success probability of SAT solvers. In Proceedings of the 2013 IEEE 54th Annual Symposium on Foundations of Computer Science, FOCS '13, pages 736-745, USA, 2013. IEEE Computer Society. URL: https://doi.org/10.1109/FOCS.2013.84.
  38. Andrew Drucker. Nondeterministic direct product reductions and the success probability of SAT solvers, 2013. URL: https://people.csail.mit.edu/andyd/success_prob_long.pdf.
  39. Andrew Drucker, Jesper Nederlof, and Rahul Santhanam. Exponential Time Paradigms Through the Polynomial Time Lens. In Piotr Sankowski and Christos Zaroliagis, editors, 24th Annual European Symposium on Algorithms (ESA 2016), volume 57 of Leibniz International Proceedings in Informatics (LIPIcs), pages 36:1-36:14, Dagstuhl, Germany, 2016. Schloss Dagstuhl - Leibniz-Zentrum für Informatik. URL: https://doi.org/10.4230/LIPIcs.ESA.2016.36.
  40. Niklas Eén and Niklas Sörensson. Translating pseudo-boolean constraints into SAT. Journal on Satisfiability, Boolean Modeling and Computation, 2(1-4):1-26, 2006. URL: https://doi.org/10.3233/SAT190014.
  41. Friedrich Eisenbrand and Gennady Shmonin. Carathéodory bounds for integer cones. Oper. Res. Lett., 34(5):564-568, 2006. URL: https://doi.org/10.1016/J.ORL.2005.09.008.
  42. Friedrich Eisenbrand and Robert Weismantel. Proximity results and faster algorithms for integer programming using the steinitz lemma. ACM Trans. Algorithms, 16(1):5:1-5:14, 2020. URL: https://doi.org/10.1145/3340322.
  43. Michael Elberfeld, Christoph Stockhusen, and Till Tantau. On the space and circuit complexity of parameterized problems: Classes and completeness. Algorithmica, 71(3):661-701, 2015. URL: https://doi.org/10.1007/S00453-014-9944-Y.
  44. Paul Erdős. Graphs with prescribed degree of vertices. Mat. Lapok., 11:264-274, 1960. Google Scholar
  45. Michael R. Fellows and Frances A. Rosamond. Collaborating with Hans: Some remaining wonderments. In Fedor V. Fomin, Stefan Kratsch, and Erik Jan van Leeuwen, editors, Treewidth, Kernels, and Algorithms - Essays Dedicated to Hans L. Bodlaender on the Occasion of His 60th Birthday, volume 12160 of Lecture Notes in Computer Science, pages 7-17. Springer, 2020. URL: https://doi.org/10.1007/978-3-030-42071-0_2.
  46. Nick Fischer and Leo Wennmann. Minimizing tardy processing time on a single machine in near-linear time. In Karl Bringmann, Martin Grohe, Gabriele Puppis, and Ola Svensson, editors, 51st International Colloquium on Automata, Languages, and Programming, ICALP 2024, July 8-12, 2024, Tallinn, Estonia, volume 297 of LIPIcs, pages 64:1-64:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2024. URL: https://doi.org/10.4230/LIPICS.ICALP.2024.64.
  47. Fedor Fomin, Daniel Lokshtanov, Saket Saurabh, and Meirav Zehavi. Kernelization: theory of parameterized preprocessing. Cambridge University Press, 2019. URL: https://doi.org/10.1017/9781107415157.
  48. Steven Fortune, John E. Hopcroft, and James Wyllie. The directed subgraph homeomorphism problem. Theor. Comput. Sci., 10:111-121, 1980. URL: https://doi.org/10.1016/0304-3975(80)90009-2.
  49. Zvi Galil and Oded Margalit. An almost linear-time algorithm for the dense subset-sum problem. SIAM J. Comput., 20(6):1157-1189, 1991. URL: https://doi.org/10.1137/0220072.
  50. Carla Groenland, Gwenaël Joret, Wojciech Nadara, and Bartosz Walczak. Approximating pathwidth for graphs of small treewidth. ACM Trans. Algorithms, 19(2):16:1-16:19, 2023. URL: https://doi.org/10.1145/3576044.
  51. Godfrey Harold Hardy and Edward Maitland Wright. An introduction to the theory of numbers. Oxford university press, 1979. Google Scholar
  52. Danny Harnik and Moni Naor. On the compressibility of NP instances and cryptographic applications. SIAM Journal on Computing, 39(5):1667-1713, 2010. URL: https://doi.org/10.1137/060668092.
  53. Danny Hermelin, Stefan Kratsch, Karolina Sołtys, Magnus Wahlström, and Xi Wu. A completeness theory for polynomial (Turing) kernelization. Algorithmica, 71(3):702-730, 2015. URL: https://doi.org/10.1007/S00453-014-9910-8.
  54. Nick Howgrave-Graham and Antoine Joux. New generic algorithms for hard knapsacks. In Annual International Conference on the Theory and Applications of Cryptographic Techniques, pages 235-256. Springer, 2010. URL: https://doi.org/10.1007/978-3-642-13190-5_12.
  55. Russell Impagliazzo and Moni Naor. Efficient cryptographic schemes provably as secure as subset sum. J. Cryptol., 9(4):199-216, 1996. URL: https://doi.org/10.1007/BF00189260.
  56. Bart M. P. Jansen, Daniel Lokshtanov, and Saket Saurabh. A near-optimal planarization algorithm. In Chandra Chekuri, editor, Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2014, Portland, Oregon, USA, January 5-7, 2014, pages 1802-1811. SIAM, 2014. URL: https://doi.org/10.1137/1.9781611973402.130.
  57. Bart M. P. Jansen, Shivesh Kumar Roy, and Michał Włodarczyk. On the hardness of compressing weights. In Filippo Bonchi and Simon J. Puglisi, editors, 46th International Symposium on Mathematical Foundations of Computer Science, MFCS 2021, August 23-27, 2021, Tallinn, Estonia, volume 202 of LIPIcs, pages 64:1-64:21. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. URL: https://doi.org/10.4230/LIPICS.MFCS.2021.64.
  58. Klaus Jansen and Lars Rohwedder. On integer programming and convolution. In Avrim Blum, editor, 10th Innovations in Theoretical Computer Science Conference, ITCS 2019, January 10-12, 2019, San Diego, California, USA, volume 124 of LIPIcs, pages 43:1-43:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. URL: https://doi.org/10.4230/LIPICS.ITCS.2019.43.
  59. Ce Jin, Nikhil Vyas, and Ryan Williams. Fast low-space algorithms for subset sum. In Dániel Marx, editor, Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms, SODA 2021, Virtual Conference, January 10 - 13, 2021, pages 1757-1776. SIAM, 2021. URL: https://doi.org/10.1137/1.9781611976465.106.
  60. Saurabh Joshi, Ruben Martins, and Vasco M. Manquinho. Generalized totalizer encoding for pseudo-boolean constraints. In Gilles Pesant, editor, Principles and Practice of Constraint Programming - 21st International Conference, CP 2015, Cork, Ireland, August 31 - September 4, 2015, Proceedings, volume 9255 of Lecture Notes in Computer Science, pages 200-209. Springer, 2015. URL: https://doi.org/10.1007/978-3-319-23219-5_15.
  61. Daniel M. Kane. Unary subset-sum is in logspace. arXiv, abs/1012.1336, 2010. URL: https://arxiv.org/abs/1012.1336.
  62. Ken-ichi Kawarabayashi, Yusuke Kobayashi, and Bruce Reed. The disjoint paths problem in quadratic time. Journal of Combinatorial Theory, Series B, 102(2):424-435, 2012. URL: https://doi.org/10.1016/J.JCTB.2011.07.004.
  63. Hans Kellerer, Renata Mansini, Ulrich Pferschy, and Maria Grazia Speranza. An efficient fully polynomial approximation scheme for the subset-sum problem. J. Comput. Syst. Sci., 66(2):349-370, 2003. URL: https://doi.org/10.1016/S0022-0000(03)00006-0.
  64. Kim-Manuel Klein, Adam Polak, and Lars Rohwedder. On minimizing tardy processing time, max-min skewed convolution, and triangular structured ilps. In Nikhil Bansal and Viswanath Nagarajan, editors, Proceedings of the 2023 ACM-SIAM Symposium on Discrete Algorithms, SODA 2023, Florence, Italy, January 22-25, 2023, pages 2947-2960. SIAM, 2023. URL: https://doi.org/10.1137/1.9781611977554.CH112.
  65. Johannes Köbler and Jochen Messner. Is the standard proof system for SAT p-optimal? In Sanjiv Kapoor and Sanjiva Prasad, editors, Foundations of Software Technology and Theoretical Computer Science, 20th Conference, FSTTCS 2000 New Delhi, India, December 13-15, 2000, Proceedings, volume 1974 of Lecture Notes in Computer Science, pages 361-372. Springer, 2000. URL: https://doi.org/10.1007/3-540-44450-5_29.
  66. Konstantinos Koiliaris and Chao Xu. Faster pseudopolynomial time algorithms for subset sum. ACM Trans. Algorithms, 15(3):40:1-40:20, 2019. URL: https://doi.org/10.1145/3329863.
  67. Taisei Kudo and Akimichi Takemura. A lower bound for the Graver complexity of the incidence matrix of a complete bipartite graph. Journal of Combinatorics, 3(4):695-708, 2013. Google Scholar
  68. Marvin Künnemann, Filip Mazowiecki, Lia Schütze, Henry Sinclair-Banks, and Karol Wegrzycki. Coverability in VASS Revisited: Improving Rackoff’s Bound to Obtain Conditional Optimality. In Kousha Etessami, Uriel Feige, and Gabriele Puppis, editors, 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023), volume 261 of Leibniz International Proceedings in Informatics (LIPIcs), pages 131:1-131:20, Dagstuhl, Germany, 2023. Schloss Dagstuhl - Leibniz-Zentrum für Informatik. URL: https://doi.org/10.4230/LIPIcs.ICALP.2023.131.
  69. Jeffrey C Lagarias and Andrew M Odlyzko. Solving low-density subset sum problems. Journal of the ACM (JACM), 32(1):229-246, 1985. URL: https://doi.org/10.1145/2455.2461.
  70. Eugene L Lawler and J Michael Moore. A functional equation and its application to resource allocation and sequencing problems. Management science, 16(1):77-84, 1969. Google Scholar
  71. Francis Lazarus and Arnaud de Mesmay. Knots and 3-dimensional computational topology, 2017. URL: https://pagesperso.g-scop.grenoble-inp.fr/~lazarusf/Enseignement/compuTopo6.pdf.
  72. Andrew Peter Lin. Solving hard problems in election systems. Rochester Institute of Technology, 2012. URL: https://repository.rit.edu/cgi/viewcontent.cgi?article=1332&context=theses.
  73. Daniel Lokshtanov, Pranabendu Misra, Michał Pilipczuk, Saket Saurabh, and Meirav Zehavi. An exponential time parameterized algorithm for planar disjoint paths. In Konstantin Makarychev, Yury Makarychev, Madhur Tulsiani, Gautam Kamath, and Julia Chuzhoy, editors, Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing, STOC 2020, Chicago, IL, USA, June 22-26, 2020, pages 1307-1316. ACM, 2020. URL: https://doi.org/10.1145/3357713.3384250.
  74. Dániel Marx and Igor Razgon. Fixed-parameter tractability of multicut parameterized by the size of the cutset. SIAM J. Comput., 43(2):355-388, 2014. URL: https://doi.org/10.1137/110855247.
  75. Ralph Merkle and Martin Hellman. Hiding information and signatures in trapdoor knapsacks. IEEE transactions on Information Theory, 24(5):525-530, 1978. URL: https://doi.org/10.1109/TIT.1978.1055927.
  76. Marcin Mucha, Karol Węgrzycki, and Michał Włodarczyk. A subquadratic approximation scheme for partition. In Timothy M. Chan, editor, Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2019, San Diego, California, USA, January 6-9, 2019, pages 70-88. SIAM, 2019. URL: https://doi.org/10.1137/1.9781611975482.5.
  77. Jesper Nederlof, Erik Jan van Leeuwen, and Ruben van der Zwaan. Reducing a target interval to a few exact queries. In Branislav Rovan, Vladimiro Sassone, and Peter Widmayer, editors, Mathematical Foundations of Computer Science 2012 - 37th International Symposium, MFCS 2012, Bratislava, Slovakia, August 27-31, 2012. Proceedings, volume 7464 of Lecture Notes in Computer Science, pages 718-727. Springer, 2012. URL: https://doi.org/10.1007/978-3-642-32589-2_62.
  78. Jesper Nederlof and Karol Wegrzycki. Improving Schroeppel and Shamir’s algorithm for subset sum via orthogonal vectors. In Samir Khuller and Virginia Vassilevska Williams, editors, STOC '21: 53rd Annual ACM SIGACT Symposium on Theory of Computing, Virtual Event, Italy, June 21-25, 2021, pages 1670-1683. ACM, 2021. URL: https://doi.org/10.1145/3406325.3451024.
  79. Jean-Louis Nicolas. On Landau’s Function g(n), pages 228-240. Springer Berlin Heidelberg, Berlin, Heidelberg, 1997. URL: https://doi.org/10.1007/978-3-642-60408-9_18.
  80. Ramamohan Paturi and Pavel Pudlak. On the complexity of circuit satisfiability. In Proceedings of the Forty-Second ACM Symposium on Theory of Computing, STOC '10, pages 241-250, New York, NY, USA, 2010. Association for Computing Machinery. URL: https://doi.org/10.1145/1806689.1806724.
  81. Michał Pilipczuk and Marcin Wrochna. On space efficiency of algorithms working on structural decompositions of graphs. ACM Trans. Comput. Theory, 9(4):18:1-18:36, 2018. URL: https://doi.org/10.1145/3154856.
  82. David Pisinger. Linear time algorithms for knapsack problems with bounded weights. Journal of Algorithms, 33(1):1-14, 1999. URL: https://doi.org/10.1006/JAGM.1999.1034.
  83. Adam Polak, Lars Rohwedder, and Karol Wegrzycki. Knapsack and subset sum with small items. In Nikhil Bansal, Emanuela Merelli, and James Worrell, editors, 48th International Colloquium on Automata, Languages, and Programming, ICALP 2021, July 12-16, 2021, Glasgow, Scotland (Virtual Conference), volume 198 of LIPIcs, pages 106:1-106:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. URL: https://doi.org/10.4230/LIPICS.ICALP.2021.106.
  84. Krzysztof Potepa. Faster deterministic modular subset sum. In Petra Mutzel, Rasmus Pagh, and Grzegorz Herman, editors, 29th Annual European Symposium on Algorithms, ESA 2021, September 6-8, 2021, Lisbon, Portugal (Virtual Conference), volume 204 of LIPIcs, pages 76:1-76:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. URL: https://doi.org/10.4230/LIPICS.ESA.2021.76.
  85. Neil Robertson and Paul D Seymour. Graph minors. XX. Wagner’s conjecture. Journal of Combinatorial Theory, Series B, 92(2):325-357, 2004. URL: https://doi.org/10.1016/J.JCTB.2004.08.001.
  86. Derek JS Robinson. An introduction to abstract algebra. Walter de Gruyter, 2003. Google Scholar
  87. Alexander Schrijver. Finding k disjoint paths in a directed planar graph. SIAM Journal on Computing, 23(4):780-788, 1994. URL: https://doi.org/10.1137/S0097539792224061.
  88. Aleksandrs Slivkins. Parameterized tractability of edge-disjoint paths on directed acyclic graphs. SIAM J. Discret. Math., 24(1):146-157, 2010. URL: https://doi.org/10.1137/070697781.
  89. Pavel Smirnov, Jeremias Berg, and Matti Järvisalo. Pseudo-boolean optimization by implicit hitting sets. In Laurent D. Michel, editor, 27th International Conference on Principles and Practice of Constraint Programming, CP 2021, Montpellier, France (Virtual Conference), October 25-29, 2021, volume 210 of LIPIcs, pages 51:1-51:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. URL: https://doi.org/10.4230/LIPICS.CP.2021.51.
  90. Magnus Wahlström. Abusing the Tutte matrix: An algebraic instance compression for the K-set-cycle problem. In Natacha Portier and Thomas Wilke, editors, 30th International Symposium on Theoretical Aspects of Computer Science, STACS 2013, February 27 - March 2, 2013, Kiel, Germany, volume 20 of LIPIcs, pages 341-352. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2013. URL: https://doi.org/10.4230/LIPICS.STACS.2013.341.
  91. David P. Williamson and David B. Shmoys. The Design of Approximation Algorithms. Cambridge University Press, 2011. URL: http://www.cambridge.org/de/knowledge/isbn/item5759340/?site_locale=de_DE.
  92. Michał Włodarczyk. Does subset sum admit short proofs? arXiv, abs/2409.03526, 2024. URL: https://arxiv.org/abs/2409.03526.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail