LIPIcs.ITCS.2020.30.pdf
- Filesize: 484 kB
- 13 pages
We consider the problem of amplifying two-party coin-tossing protocols: given a protocol where it is possible to bias the common output by at most ρ, we aim to obtain a new protocol where the output can be biased by at most ρ* < ρ. We rule out the existence of a natural type of amplifiers called oblivious amplifiers for every ρ* < ρ. Such amplifiers ignore the way that the underlying ρ-bias protocol works and can only invoke an oracle that provides ρ-bias bits. We provide two proofs of this impossibility. The first is by a reduction to the impossibility of deterministic randomness extraction from Santha-Vazirani sources. The second is a direct proof that is more general and also rules outs certain types of asymmetric amplification. In addition, it gives yet another proof for the Santha-Vazirani impossibility.
Feedback for Dagstuhl Publishing