Ikenmeyer et al. (JACM'19) proved an unconditional exponential separation between the hazard-free complexity and (standard) circuit complexity of explicit functions. This raises the question: which classes of functions permit efficient hazard-free circuits? In this work, we prove that circuit implementations of transducers with small state space are such a class. A transducer is a finite state machine that transcribes, symbol by symbol, an input string of length n into an output string of length n. We present a construction that transforms any function arising from a transducer into an efficient circuit of size 𝒪(n) computing the hazard-free extension of the function. More precisely, given a transducer with s states, receiving n input symbols encoded by l bits, and computing n output symbols encoded by m bits, the transducer has a hazard-free circuit of size n*m*2^{𝒪(s+𝓁)} and depth 𝒪(s*log(n) + 𝓁); in particular, if s, 𝓁,m ∈ 𝒪(1), size and depth are asymptotically optimal. In light of the strong hardness results by Ikenmeyer et al. (JACM'19), we consider this a surprising result.
@InProceedings{bund_et_al:LIPIcs.ITCS.2022.32, author = {Bund, Johannes and Lenzen, Christoph and Medina, Moti}, title = {{Small Hazard-Free Transducers}}, booktitle = {13th Innovations in Theoretical Computer Science Conference (ITCS 2022)}, pages = {32:1--32:24}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-217-4}, ISSN = {1868-8969}, year = {2022}, volume = {215}, editor = {Braverman, Mark}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2022.32}, URN = {urn:nbn:de:0030-drops-156281}, doi = {10.4230/LIPIcs.ITCS.2022.32}, annote = {Keywords: Hazard-Freeness, Parallel Prefix Computation, Finite State Transducers} }
Feedback for Dagstuhl Publishing