What is the power of constant-depth circuits with MOD_m gates, that can count modulo m? Can they efficiently compute MAJORITY and other symmetric functions? When m is a constant prime power, the answer is well understood. In this regime, Razborov and Smolensky proved in the 1980s that MAJORITY and MOD_m require super-polynomial-size MOD_q circuits, where q is any prime power not dividing m. However, relatively little is known about the power of MOD_m gates when m is not a prime power. For example, it is still open whether every problem decidable in exponential time can be computed by depth-3 circuits of polynomial-size and only MOD_6 gates. In this paper, we shed some light on the difficulty of proving lower bounds for MOD_m circuits, by giving new upper bounds. We show how to construct MOD_m circuits computing symmetric functions with non-prime power m, with size-depth tradeoffs that beat the longstanding lower bounds for AC^0[m] circuits when m is a prime power. Furthermore, we observe that our size-depth tradeoff circuits have essentially optimal dependence on m and d in the exponent, under a natural circuit complexity hypothesis. For example, we show that for every ε > 0, every symmetric function can be computed using MOD_m circuits of depth 3 and 2^{n^ε} size, for a constant m depending only on ε > 0. In other words, depth-3 CC^0 circuits can compute any symmetric function in subexponential size. This demonstrates a significant difference in the power of depth-3 CC^0 circuits, compared to other models: for certain symmetric functions, depth-3 AC^0 circuits require 2^{Ω(√n)} size [Håstad 1986], and depth-3 AC^0[p^k] circuits (for fixed prime power p^k) require 2^{Ω(n^{1/6})} size [Smolensky 1987]. Even for depth-2 MOD_p ∘ MOD_m circuits, 2^{Ω(n)} lower bounds were known [Barrington Straubing Thérien 1990].
@InProceedings{chapman_et_al:LIPIcs.ITCS.2022.38, author = {Chapman, Brynmor and Williams, R. Ryan}, title = {{Smaller ACC0 Circuits for Symmetric Functions}}, booktitle = {13th Innovations in Theoretical Computer Science Conference (ITCS 2022)}, pages = {38:1--38:19}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-217-4}, ISSN = {1868-8969}, year = {2022}, volume = {215}, editor = {Braverman, Mark}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2022.38}, URN = {urn:nbn:de:0030-drops-156342}, doi = {10.4230/LIPIcs.ITCS.2022.38}, annote = {Keywords: ACC, CC, circuit complexity, symmetric functions, Chinese Remainder Theorem} }
Feedback for Dagstuhl Publishing