We give a new characterization of the Sherali-Adams proof system, showing that there is a degree-d Sherali-Adams refutation of an unsatisfiable CNF formula C if and only if there is an ε > 0 and a degree-d conical junta J such that viol_C(x) - ε = J, where viol_C(x) counts the number of falsified clauses of C on an input x. Using this result we show that the linear separation complexity, a complexity measure recently studied by Hrubeš (and independently by de Oliveira Oliveira and Pudlák under the name of weak monotone linear programming gates), monotone feasibly interpolates Sherali-Adams proofs. We then investigate separation results for viol_C(x) - ε. In particular, we give a family of unsatisfiable CNF formulas C which have polynomial-size and small-width resolution proofs, but for which any representation of viol_C(x) - 1 by a conical junta requires degree Ω(n); this resolves an open question of Filmus, Mahajan, Sood, and Vinyals. Since Sherali-Adams can simulate resolution, this separates the non-negative degree of viol_C(x) - 1 and viol_C(x) - ε for arbitrarily small ε > 0. Finally, by applying lifting theorems, we translate this lower bound into new separation results between extension complexity and monotone circuit complexity.
@InProceedings{fleming_et_al:LIPIcs.ITCS.2022.69, author = {Fleming, Noah and G\"{o}\"{o}s, Mika and Grosser, Stefan and Robere, Robert}, title = {{On Semi-Algebraic Proofs and Algorithms}}, booktitle = {13th Innovations in Theoretical Computer Science Conference (ITCS 2022)}, pages = {69:1--69:25}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-217-4}, ISSN = {1868-8969}, year = {2022}, volume = {215}, editor = {Braverman, Mark}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2022.69}, URN = {urn:nbn:de:0030-drops-156658}, doi = {10.4230/LIPIcs.ITCS.2022.69}, annote = {Keywords: Proof Complexity, Extended Formulations, Circuit Complexity, Sherali-Adams} }
Feedback for Dagstuhl Publishing