We further the study of supercritical tradeoffs in proof and circuit complexity, which is a type of tradeoff between complexity parameters where restricting one complexity parameter forces another to exceed its worst-case upper bound. In particular, we prove a new family of supercritical tradeoffs between depth and size for Resolution, Res(k), and Cutting Planes proofs. For each of these proof systems we construct, for each c ≤ n^{1-ε}, a formula with n^{O(c)} clauses and n variables that has a proof of size n^{O(c)} but in which any proof of size no more than roughly exponential in n^{1-ε}/c must necessarily have depth ≈ n^c. By setting c = o(n^{1-ε}) we therefore obtain exponential lower bounds on proof depth; this far exceeds the trivial worst-case upper bound of n. In doing so we give a simplified proof of a supercritical depth/width tradeoff for tree-like Resolution from [Alexander A. Razborov, 2016]. Finally, we outline several conjectures that would imply similar supercritical tradeoffs between size and depth in circuit complexity via lifting theorems.
@InProceedings{fleming_et_al:LIPIcs.ITCS.2022.70, author = {Fleming, Noah and Pitassi, Toniann and Robere, Robert}, title = {{Extremely Deep Proofs}}, booktitle = {13th Innovations in Theoretical Computer Science Conference (ITCS 2022)}, pages = {70:1--70:23}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-217-4}, ISSN = {1868-8969}, year = {2022}, volume = {215}, editor = {Braverman, Mark}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2022.70}, URN = {urn:nbn:de:0030-drops-156665}, doi = {10.4230/LIPIcs.ITCS.2022.70}, annote = {Keywords: Proof Complexity, Tradeoffs, Resolution, Cutting Planes} }
Feedback for Dagstuhl Publishing