PPP-Completeness and Extremal Combinatorics

Authors Romain Bourneuf, Lukáš Folwarczný , Pavel Hubáček , Alon Rosen , Nikolaj I. Schwartzbach



PDF
Thumbnail PDF

File

LIPIcs.ITCS.2023.22.pdf
  • Filesize: 0.88 MB
  • 20 pages

Document Identifiers

Author Details

Romain Bourneuf
  • ENS de Lyon, France
Lukáš Folwarczný
  • Charles University, Faculty of Mathematics and Physics, Prague, Czech Republic
  • Institute of Mathematics of the Czech Academy of Sciences, Prague, Czech Republic
Pavel Hubáček
  • Charles University, Faculty of Mathematics and Physics, Prague, Czech Republic
Alon Rosen
  • Bocconi University, Milano, Italy
  • Reichman University, Herzliya, Israel
Nikolaj I. Schwartzbach
  • Department of Computer Science, Aarhus University, Denmark

Cite AsGet BibTex

Romain Bourneuf, Lukáš Folwarczný, Pavel Hubáček, Alon Rosen, and Nikolaj I. Schwartzbach. PPP-Completeness and Extremal Combinatorics. In 14th Innovations in Theoretical Computer Science Conference (ITCS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 251, pp. 22:1-22:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)
https://doi.org/10.4230/LIPIcs.ITCS.2023.22

Abstract

Many classical theorems in combinatorics establish the emergence of substructures within sufficiently large collections of objects. Well-known examples are Ramsey’s theorem on monochromatic subgraphs and the Erdős-Rado sunflower lemma. Implicit versions of the corresponding total search problems are known to be PWPP-hard under randomized reductions in the case of Ramsey’s theorem and PWPP-hard in the case of the sunflower lemma; here "implicit” means that the collection is represented by a poly-sized circuit inducing an exponentially large number of objects. We show that several other well-known theorems from extremal combinatorics - including Erdős-Ko-Rado, Sperner, and Cayley’s formula – give rise to complete problems for PWPP and PPP. This is in contrast to the Ramsey and Erdős-Rado problems, for which establishing inclusion in PWPP has remained elusive. Besides significantly expanding the set of problems that are complete for PWPP and PPP, our work identifies some key properties of combinatorial proofs of existence that can give rise to completeness for these classes. Our completeness results rely on efficient encodings for which finding collisions allows extracting the desired substructure. These encodings are made possible by the tightness of the bounds for the problems at hand (tighter than what is known for Ramsey’s theorem and the sunflower lemma). Previous techniques for proving bounds in TFNP invariably made use of structured algorithms. Such algorithms are not known to exist for the theorems considered in this work, as their proofs "from the book" are non-constructive.

Subject Classification

ACM Subject Classification
  • Theory of computation → Problems, reductions and completeness
  • Theory of computation → Complexity classes
Keywords
  • total search problems
  • extremal combinatorics
  • PPP-completeness

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Frank Ban, Kamal Jain, Christos H. Papadimitriou, Christos-Alexandros Psomas, and Aviad Rubinstein. Reductions in PPP. Inf. Process. Lett., 145:48-52, 2019. URL: https://doi.org/10.1016/j.ipl.2018.12.009.
  2. Zsolt Baranyai. Infinite and finite sets, vol. 1. proceedings of a colloquium held at Keszthely, June 25 - July 1, 1973. Dedicated to Paul Erdős on his 60th Birthday. J. Symb. Log., 1:91-108, 1973. Google Scholar
  3. Romain Bourneuf, Lukáš Folwarczný, Pavel Hubáček, Alon Rosen, and Nikolaj Ignatieff Schwartzbach. PPP-completeness and extremal combinatorics, 2022. URL: https://doi.org/10.48550/arXiv.2209.04827.
  4. Arthur Cayley. A theorem on trees. Quarterly Journal of Mathematics, 23:376-378, 1889. Google Scholar
  5. Thomas M. Cover. Enumerative source encoding. IEEE Transactions on Information Theory, 19(1):73-77, 1973. URL: https://doi.org/10.1109/TIT.1973.1054929.
  6. Ivan Bjerre Damgård. A design principle for hash functions. In Gilles Brassard, editor, Advances in Cryptology - CRYPTO' 89 Proceedings, pages 416-427, New York, NY, 1990. Springer New York. Google Scholar
  7. Constantinos Daskalakis, Paul W. Goldberg, and Christos H. Papadimitriou. The complexity of computing a Nash equilibrium. SIAM J. Comput., 39(1):195-259, 2009. URL: https://doi.org/10.1137/070699652.
  8. Paul Erdős. Some remarks on the theory of graphs. Bulletin of the American Mathematical Society, 53(4):292-294, 1947. Google Scholar
  9. Paul Erdős, Chao Ko, and Richard Rado. Intersection theorems for systems of finite sets. The Quarterly Journal of Mathematics, 12(1):313-320, January 1961. URL: https://doi.org/10.1093/qmath/12.1.313.
  10. Paul Erdős and Richard Rado. Intersection theorems for systems of sets. Journal of the London Mathematical Society, s1-35(1):85-90, 1960. URL: https://doi.org/10.1112/jlms/s1-35.1.85.
  11. Aris Filos-Ratsikas and Paul W. Goldberg. Consensus halving is PPA-complete. In Ilias Diakonikolas, David Kempe, and Monika Henzinger, editors, Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2018, Los Angeles, CA, USA, June 25-29, 2018, pages 51-64. ACM, 2018. URL: https://doi.org/10.1145/3188745.3188880.
  12. Paul W. Goldberg and Christos H. Papadimitriou. TFNP: an update. In Dimitris Fotakis, Aris Pagourtzis, and Vangelis Th. Paschos, editors, Algorithms and Complexity - 10th International Conference, CIAC 2017, Athens, Greece, May 24-26, 2017, Proceedings, volume 10236 of Lecture Notes in Computer Science, pages 3-9, 2017. URL: https://doi.org/10.1007/978-3-319-57586-5_1.
  13. Pavel Hubáček and Jan Václavek. On search complexity of discrete logarithm. In Filippo Bonchi and Simon J. Puglisi, editors, 46th International Symposium on Mathematical Foundations of Computer Science, MFCS 2021, August 23-27, 2021, Tallinn, Estonia, volume 202 of LIPIcs, pages 60:1-60:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. URL: https://doi.org/10.4230/LIPIcs.MFCS.2021.60.
  14. Emil Jeřábek. Integer factoring and modular square roots. J. Comput. Syst. Sci., 82(2):380-394, 2016. URL: https://doi.org/10.1016/j.jcss.2015.08.001.
  15. David S. Johnson, Christos H. Papadimitriou, and Mihalis Yannakakis. How easy is local search? J. Comput. Syst. Sci., 37(1):79-100, 1988. URL: https://doi.org/10.1016/0022-0000(88)90046-3.
  16. Ilan Komargodski, Moni Naor, and Eylon Yogev. White-box vs. black-box complexity of search problems: Ramsey and graph property testing. J. ACM, 66(5), July 2019. URL: https://doi.org/10.1145/3341106.
  17. Leszek Aleksander Kołodziejczyk and Neil Thapen. Approximate counting and NP search problems. CoRR, abs/1812.10771, 2018. URL: http://arxiv.org/abs/1812.10771.
  18. Jan Krajíček. Structured pigeonhole principle, search problems and hard tautologies. J. Symb. Log., 70(2):619-630, 2005. URL: https://doi.org/10.2178/jsl/1120224731.
  19. Willem Mantel. Problem 28 (Solution by H. Gouwentak, W. Mantel, J. Teixeira de Mattes, F. Schuh and W. A. Wythoff). Wiskundige Opgaven, 18:60-61, 1907. Google Scholar
  20. Nimrod Megiddo and Christos H. Papadimitriou. On total functions, existence theorems and computational complexity. Theor. Comput. Sci., 81(2):317-324, 1991. URL: https://doi.org/10.1016/0304-3975(91)90200-L.
  21. Ruta Mehta. Constant rank two-player games are PPAD-hard. SIAM J. Comput., 47(5):1858-1887, 2018. URL: https://doi.org/10.1137/15M1032338.
  22. Ralph Charles Merkle. Secrecy, Authentication, and Public Key Systems. PhD thesis, Stanford University, Stanford, CA, USA, 1979. AAI8001972. Google Scholar
  23. Christos H. Papadimitriou. On the complexity of the parity argument and other inefficient proofs of existence. J. Comput. Syst. Sci., 48(3):498-532, 1994. URL: https://doi.org/10.1016/S0022-0000(05)80063-7.
  24. Amol Pasarkar, Mihalis Yannakakis, and Christos H. Papadimitriou. Extremal combinatorics, iterated pigeonhole arguments, and generalizations of PPP. CoRR, abs/2209.07625, 2022. URL: https://doi.org/10.48550/arXiv.2209.07625.
  25. Frank P. Ramsey. On a Problem of Formal Logic. Proceedings of the London Mathematical Society, s2-30(1):264-286, January 1930. URL: https://doi.org/10.1112/plms/s2-30.1.264.
  26. Katerina Sotiraki, Manolis Zampetakis, and Giorgos Zirdelis. PPP-completeness with connections to cryptography. In Mikkel Thorup, editor, 59th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2018, Paris, France, October 7-9, 2018, pages 148-158. IEEE Computer Society, 2018. URL: https://doi.org/10.1109/FOCS.2018.00023.
  27. Emanuel Sperner. Ein Satz über Untermengen einer endlichen Menge. Mathematische Zeitschrift, 27(1):544-548, 1928. Google Scholar
  28. Paul Turán. On an extremal problem in graph theory (in Hungarian). Matematikai és Fizikai Lapok, 48:436-452, 1941. Google Scholar
  29. C. Ward and S. Szabó. On swell-colored complete graphs. Acta Mathematica Universitatis Comenianae. New Series, 63(2):303-308, 1994. URL: http://eudml.org/doc/118694.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail