One-Way Functions vs. TFNP: Simpler and Improved

Authors Lukáš Folwarczný , Mika Göös, Pavel Hubáček , Gilbert Maystre , Weiqiang Yuan



PDF
Thumbnail PDF

File

LIPIcs.ITCS.2024.50.pdf
  • Filesize: 0.85 MB
  • 14 pages

Document Identifiers

Author Details

Lukáš Folwarczný
  • Institute of Mathematics, Czech Academy of Sciences, Prague, Czech Republic
  • Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic
Mika Göös
  • EPFL, Lausanne, Switzerland
Pavel Hubáček
  • Institute of Mathematics, Czech Academy of Sciences, Prague, Czech Republic
  • Charles University, Faculty of Mathematics and Physics, Czech Republic
Gilbert Maystre
  • EPFL, Lausanne, Switzerland
Weiqiang Yuan
  • EPFL, Lausanne, Switzerland

Acknowledgements

We thank anonymous reviewers for their helpful comments.

Cite AsGet BibTex

Lukáš Folwarczný, Mika Göös, Pavel Hubáček, Gilbert Maystre, and Weiqiang Yuan. One-Way Functions vs. TFNP: Simpler and Improved. In 15th Innovations in Theoretical Computer Science Conference (ITCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 287, pp. 50:1-50:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
https://doi.org/10.4230/LIPIcs.ITCS.2024.50

Abstract

Simon (1998) proved that it is impossible to construct collision-resistant hash functions from one-way functions using a black-box reduction. It is conjectured more generally that one-way functions do not imply, via a black-box reduction, the hardness of any total NP search problem (collision-resistant hash functions being just one such example). We make progress towards this conjecture by ruling out a large class of "single-query" reductions. In particular, we improve over the prior work of Hubáček et al. (2020) in two ways: our result is established via a novel simpler combinatorial technique and applies to a broader class of semi black-box reductions.

Subject Classification

ACM Subject Classification
  • Theory of computation → Oracles and decision trees
Keywords
  • TFNP
  • One-Way Functions
  • Oracle
  • Separation
  • Black-Box

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Tim Abbot, Daniel Kane, and Paul Valiant. On algorithms for Nash equilibria. Unpublished manuscript, 2004. URL: http://web.mit.edu/tabbott/Public/final.pdf.
  2. Paul Baecher. Simon’s circuit. Cryptology ePrint Archive, Paper 2014/476, 2014. URL: https://eprint.iacr.org/2014/476.
  3. Nir Bitansky, Arka Rai Choudhuri, Justin Holmgren, Chethan Kamath, Alex Lombardi, Omer Paneth, and Ron D. Rothblum. PPAD is as hard as LWE and iterated squaring. In Eike Kiltz and Vinod Vaikuntanathan, editors, Theory of Cryptography - 20th International Conference, TCC 2022, Chicago, IL, USA, November 7-10, 2022, Proceedings, Part II, volume 13748 of Lecture Notes in Computer Science, pages 593-622. Springer, 2022. URL: https://doi.org/10.1007/978-3-031-22365-5_21.
  4. Nir Bitansky, Akshay Degwekar, and Vinod Vaikuntanathan. Structure versus hardness through the obfuscation lens. SIAM J. Comput., 50(1):98-144, 2021. URL: https://doi.org/10.1137/17M1136559.
  5. Nir Bitansky and Idan Gerichter. On the cryptographic hardness of local search. In Thomas Vidick, editor, 11th Innovations in Theoretical Computer Science Conference, ITCS 2020, January 12-14, 2020, Seattle, Washington, USA, volume 151 of LIPIcs, pages 6:1-6:29. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. URL: https://doi.org/10.4230/LIPIcs.ITCS.2020.6.
  6. Nir Bitansky, Omer Paneth, and Alon Rosen. On the cryptographic hardness of finding a Nash equilibrium. In Venkatesan Guruswami, editor, IEEE 56th Annual Symposium on Foundations of Computer Science, FOCS 2015, Berkeley, CA, USA, 17-20 October, 2015, pages 1480-1498. IEEE Computer Society, 2015. URL: https://doi.org/10.1109/FOCS.2015.94.
  7. Arka Rai Choudhuri, Pavel Hubáček, Chethan Kamath, Krzysztof Pietrzak, Alon Rosen, and Guy N. Rothblum. Finding a Nash equilibrium is no easier than breaking Fiat-Shamir. In Moses Charikar and Edith Cohen, editors, Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing, STOC 2019, Phoenix, AZ, USA, June 23-26, 2019, pages 1103-1114. ACM, 2019. URL: https://doi.org/10.1145/3313276.3316400.
  8. Constantinos Daskalakis. Equilibria, fixed points, and computational complexity. In Proceedings of the International Congress of Mathematicians (ICM). World Scientific, 2019. URL: https://doi.org/10.1142/9789813272880_0009.
  9. Rosario Gennaro, Yael Gertner, Jonathan Katz, and Luca Trevisan. Bounds on the efficiency of generic cryptographic constructions. SIAM J. Comput., 35(1):217-246, 2005. Google Scholar
  10. Rosario Gennaro and Luca Trevisan. Lower bounds on the efficiency of generic cryptographic constructions. In FOCS, pages 305-313. IEEE Computer Society, 2000. Google Scholar
  11. Yael Gertner, Tal Malkin, and Omer Reingold. On the impossibility of basing trapdoor functions on trapdoor predicates. In 42nd Annual Symposium on Foundations of Computer Science, FOCS 2001, 14-17 October 2001, Las Vegas, Nevada, USA, pages 126-135. IEEE Computer Society, 2001. URL: https://doi.org/10.1109/SFCS.2001.959887.
  12. Iftach Haitner, Jonathan J. Hoch, Omer Reingold, and Gil Segev. Finding collisions in interactive protocols - tight lower bounds on the round and communication complexities of statistically hiding commitments. SIAM J. Comput., 44(1):193-242, 2015. Google Scholar
  13. Alexandros Hollender. Structural results for total search complexity classes with applications to game theory and optimisation. PhD thesis, University of Oxford, 2021. URL: https://ora.ox.ac.uk/objects/uuid:67e2d80b-76bf-4b49-9b7d-8bbd91633dd7.
  14. Pavel Hubáček, Chethan Kamath, Karel Král, and Veronika Slívová. On average-case hardness in TFNP from one-way functions. In Rafael Pass and Krzysztof Pietrzak, editors, Theory of Cryptography - 18th International Conference, TCC 2020, Durham, NC, USA, November 16-19, 2020, Proceedings, Part III, volume 12552 of Lecture Notes in Computer Science, pages 614-638. Springer, 2020. URL: https://doi.org/10.1007/978-3-030-64381-2_22.
  15. Pavel Hubáček, Moni Naor, and Eylon Yogev. The journey from NP to TFNP hardness. In Christos H. Papadimitriou, editor, 8th Innovations in Theoretical Computer Science Conference, ITCS 2017, January 9-11, 2017, Berkeley, CA, USA, volume 67 of LIPIcs, pages 60:1-60:21. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017. URL: https://doi.org/10.4230/LIPIcs.ITCS.2017.60.
  16. Pavel Hubáček and Eylon Yogev. Hardness of continuous local search: Query complexity and cryptographic lower bounds. SIAM J. Comput., 49(6):1128-1172, 2020. URL: https://doi.org/10.1137/17M1118014.
  17. Russell Impagliazzo and Steven Rudich. Limits on the provable consequences of one-way permutations. In Proceedings of the 21st Annual ACM Symposium on Theory of Computing, May 14-17, 1989, Seattle, Washigton, USA, pages 44-61. ACM, 1989. Google Scholar
  18. Ruta Jawale, Yael Tauman Kalai, Dakshita Khurana, and Rachel Yun Zhang. SNARGs for bounded depth computations and PPAD hardness from sub-exponential LWE. In Samir Khuller and Virginia Vassilevska Williams, editors, STOC '21: 53rd Annual ACM SIGACT Symposium on Theory of Computing, Virtual Event, Italy, June 21-25, 2021, pages 708-721. ACM, 2021. URL: https://doi.org/10.1145/3406325.3451055.
  19. Emil Jeřábek. Integer factoring and modular square roots. Journal of Computer and System Sciences, 82(2):380-394, March 2016. URL: https://doi.org/10.1016/j.jcss.2015.08.001.
  20. David Johnson, Christos Papadimitriou, and Mihalis Yannakakis. How easy is local search? Journal of Computer and System Sciences, 37(1):79-100, 1988. URL: https://doi.org/10.1016/0022-0000(88)90046-3.
  21. Yael Tauman Kalai, Alex Lombardi, and Vinod Vaikuntanathan. SNARGs and PPAD hardness from the decisional Diffie-Hellman assumption. In Carmit Hazay and Martijn Stam, editors, Advances in Cryptology - EUROCRYPT 2023 - 42nd Annual International Conference on the Theory and Applications of Cryptographic Techniques, Lyon, France, April 23-27, 2023, Proceedings, Part II, volume 14005 of Lecture Notes in Computer Science, pages 470-498. Springer, 2023. URL: https://doi.org/10.1007/978-3-031-30617-4_16.
  22. Yael Tauman Kalai, Omer Paneth, and Lisa Yang. Delegation with updatable unambiguous proofs and PPAD-hardness. In Daniele Micciancio and Thomas Ristenpart, editors, Advances in Cryptology - CRYPTO 2020 - 40th Annual International Cryptology Conference, CRYPTO 2020, Santa Barbara, CA, USA, August 17-21, 2020, Proceedings, Part III, volume 12172 of Lecture Notes in Computer Science, pages 652-673. Springer, 2020. URL: https://doi.org/10.1007/978-3-030-56877-1_23.
  23. Ilan Komargodski, Moni Naor, and Eylon Yogev. White-box vs. black-box complexity of search problems: Ramsey and graph property testing. J. ACM, 66(5):34:1-34:28, 2019. Google Scholar
  24. Ilan Komargodski and Gil Segev. From Minicrypt to Obfustopia via private-key functional encryption. J. Cryptol., 33(2):406-458, 2020. URL: https://doi.org/10.1007/s00145-019-09327-x.
  25. Alex Lombardi and Vinod Vaikuntanathan. Fiat-Shamir for repeated squaring with applications to PPAD-hardness and VDFs. In Daniele Micciancio and Thomas Ristenpart, editors, Advances in Cryptology - CRYPTO 2020 - 40th Annual International Cryptology Conference, CRYPTO 2020, Santa Barbara, CA, USA, August 17-21, 2020, Proceedings, Part III, volume 12172 of Lecture Notes in Computer Science, pages 632-651. Springer, 2020. URL: https://doi.org/10.1007/978-3-030-56877-1_22.
  26. Nimrod Megiddo and Christos Papadimitriou. On total functions, existence theorems and computational complexity. Theoretical Computer Science, 81(2):317-324, 1991. URL: https://doi.org/10.1016/0304-3975(91)90200-L.
  27. Arno Mittelbach and Marc Fischlin. The Theory of Hash Functions and Random Oracles - An Approach to Modern Cryptography. Information Security and Cryptography. Springer, 2021. URL: https://doi.org/10.1007/978-3-030-63287-8.
  28. Christos Papadimitriou. On the complexity of the parity argument and other inefficient proofs of existence. Journal of Computer and System Sciences, 48(3):498-532, 1994. URL: https://doi.org/10.1016/s0022-0000(05)80063-7.
  29. Pavel Pudlák. On the complexity of finding falsifying assignments for Herbrand disjunctions. Archive for Mathematical Logic, 54(7-8):769-783, 2015. URL: https://doi.org/10.1007/s00153-015-0439-6.
  30. Omer Reingold, Luca Trevisan, and Salil P. Vadhan. Notions of reducibility between cryptographic primitives. In Theory of Cryptography, First Theory of Cryptography Conference, TCC 2004, Cambridge, MA, USA, February 19-21, 2004, Proceedings, pages 1-20, 2004. Google Scholar
  31. Alon Rosen, Gil Segev, and Ido Shahaf. Can PPAD hardness be based on standard cryptographic assumptions? J. Cryptol., 34(1):8, 2021. URL: https://doi.org/10.1007/s00145-020-09369-6.
  32. Daniel R. Simon. Finding collisions on a one-way street: Can secure hash functions be based on general assumptions? In Kaisa Nyberg, editor, Advances in Cryptology - EUROCRYPT '98, International Conference on the Theory and Application of Cryptographic Techniques, Espoo, Finland, May 31 - June 4, 1998, Proceeding, volume 1403 of Lecture Notes in Computer Science, pages 334-345. Springer, 1998. URL: https://doi.org/10.1007/BFb0054137.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail