Round-Vs-Resilience Tradeoffs for Binary Feedback Channels

Authors Mark Braverman , Klim Efremenko , Gillat Kol , Raghuvansh R. Saxena, Zhijun Zhang



PDF
Thumbnail PDF

File

LIPIcs.ITCS.2025.22.pdf
  • Filesize: 0.84 MB
  • 23 pages

Document Identifiers

Author Details

Mark Braverman
  • Princeton University, NJ, USA
Klim Efremenko
  • Ben-Gurion University, Beer-Sheva, Israel
Gillat Kol
  • Princeton University, NJ, USA
Raghuvansh R. Saxena
  • Tata Institute of Fundamental Research, Mumbai, India
Zhijun Zhang
  • Princeton University, NJ, USA

Acknowledgements

We thank Noga Alon for discussions regarding Conjecture 3.

Cite As Get BibTex

Mark Braverman, Klim Efremenko, Gillat Kol, Raghuvansh R. Saxena, and Zhijun Zhang. Round-Vs-Resilience Tradeoffs for Binary Feedback Channels. In 16th Innovations in Theoretical Computer Science Conference (ITCS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 325, pp. 22:1-22:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025) https://doi.org/10.4230/LIPIcs.ITCS.2025.22

Abstract

In a celebrated result from the 60’s, Berlekamp showed that feedback can be used to increase the maximum fraction of adversarial noise that can be tolerated by binary error correcting codes from 1/4 to 1/3. However, his result relies on the assumption that feedback is "continuous", i.e., after every utilization of the channel, the sender gets the symbol received by the receiver. While this assumption is natural in some settings, in other settings it may be unreasonable or too costly to maintain.
In this work, we initiate the study of round-restricted feedback channels, where the number r of feedback rounds is possibly much smaller than the number of utilizations of the channel. Error correcting codes for such channels are protocols where the sender can ask for feedback at most r times, and, upon a feedback request, it obtains all the symbols received since its last feedback request. We design such error correcting protocols for both the adversarial binary erasure channel and for the adversarial binary corruption (bit flip) channel. For the erasure channel, we give an exact characterization of the round-vs-resilience tradeoff by designing a (constant rate) protocol with r feedback rounds, for every r, and proving that its noise resilience is optimal.
Designing such error correcting protocols for the corruption channel is substantially more involved. We show that obtaining the optimal resilience, even with one feedback round (r = 1), requires settling (proving or disproving) a new, seemingly unrelated, "clean" combinatorial conjecture, about the maximum cut in weighted graphs versus the "imbalance" of an average cut. Specifically, we prove an upper bound on the optimal resilience (impossibility result), and show that the existence of a matching lower bound (a protocol) is equivalent to the correctness of our conjecture.

Subject Classification

ACM Subject Classification
  • Theory of computation → Error-correcting codes
Keywords
  • Round-restricted feedback channel
  • error correcting code
  • noise resilience

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Rudolf Ahlswede, Christian Deppe, and Vladimir S. Lebedev. Non-binary error correcting codes with noiseless feedback, localized errors, or both. In International Symposium on Information Theory (ISIT), pages 2486-2487, 2006. URL: https://doi.org/10.1109/ISIT.2006.262057.
  2. Noga Alon. Voting paradoxes and digraphs realizations. Adv. Appl. Math., 29(1):126-135, 2002. URL: https://doi.org/10.1016/S0196-8858(02)00007-6.
  3. Noga Alon, Boris Bukh, and Yury Polyanskiy. List-decodable zero-rate codes. IEEE Trans. Inf. Theory, 65(3):1657-1667, 2019. URL: https://doi.org/10.1109/TIT.2018.2868957.
  4. Elwyn R. Berlekamp. Block coding with noiseless feedback. PhD thesis, Massachusetts Institute of Technology, USA, 1964. URL: http://hdl.handle.net/1721.1/14783.
  5. Elwyn R Berlekamp. Block coding for the binary symmetric channel with noiseless, delayless feedback. Error-correcting codes, pages 61-68, 1968. Google Scholar
  6. Vladimir Markovich Blinovskii. Bounds for codes in the case of finite-volume list decoding. Problemy Peredachi Informatsii, 22(1):11-25, 1986. Google Scholar
  7. Vladimir M Blinovsky. Plotkin bound generalization to the case of multiple packings. Problems of Information Transmission, 45(1):1-4, 2009. URL: https://doi.org/10.1134/S0032946009010013.
  8. Mark Braverman, Klim Efremenko, Gillat Kol, Raghuvansh Saxena, and Zhijun Zhang. Round-vs-resilience tradeoffs for binary feedback channels. Electron. Colloquium Comput. Complex., TR22-179, 2022. URL: https://eccc.weizmann.ac.il/report/2022/179, URL: https://arxiv.org/abs/TR22-179.
  9. Marat Valievich Burnashev. Data transmission over a discrete channel with feedback. random transmission time. Problemy peredachi informatsii, 12(4):10-30, 1976. Google Scholar
  10. Klim Efremenko, Gillat Kol, and Raghuvansh R. Saxena. Binary interactive error resilience beyond 1/8 (or why (1/2)³ > 1/8). In Sandy Irani, editor, 61st IEEE Annual Symposium on Foundations of Computer Science, FOCS 2020, Durham, NC, USA, November 16-19, 2020, pages 470-481. IEEE, 2020. URL: https://doi.org/10.1109/FOCS46700.2020.00051.
  11. Klim Efremenko, Gillat Kol, Raghuvansh R. Saxena, and Zhijun Zhang. Binary codes with resilience beyond 1/4 via interaction. In 63rd IEEE Annual Symposium on Foundations of Computer Science, FOCS 2022, Denver, CO, USA, October 31 - November 3, 2022, pages 1-12. IEEE, 2022. URL: https://doi.org/10.1109/FOCS54457.2022.00008.
  12. Peter Elias. List decoding for noisy channels. Technical report, Research Laboratory of Electronics, Massachusetts Institute of Technology, 1957. Google Scholar
  13. Krishnan Eswaran, Anand D. Sarwate, Anant Sahai, and Michael Gastpar. Zero-rate feedback can achieve the empirical capacity. IEEE Transactions on Information Theory, 56(1):25-39, 2010. URL: https://doi.org/10.1109/TIT.2009.2034779.
  14. David G. Forney. Exponential error bounds for erasure, list, and decision feedback schemes. IEEE Transactions on Information Theory, 14(2):206-220, 1968. URL: https://doi.org/10.1109/TIT.1968.1054129.
  15. Meghal Gupta, Venkatesan Guruswami, and Rachel Yun Zhang. Binary error-correcting codes with minimal noiseless feedback. In Barna Saha and Rocco A. Servedio, editors, Proceedings of the 55th Annual ACM Symposium on Theory of Computing, STOC 2023, Orlando, FL, USA, June 20-23, 2023, pages 1475-1487. ACM, 2023. URL: https://doi.org/10.1145/3564246.3585126.
  16. Meghal Gupta, Yael Tauman Kalai, and Rachel Yun Zhang. Interactive error correcting codes over binary erasure channels resilient to greater onehalf adversarial corruption. In Stefano Leonardi and Anupam Gupta, editors, STOC '22: 54th Annual ACM SIGACT Symposium on Theory of Computing, Rome, Italy, June 20 - 24, 2022, pages 609-622. ACM, 2022. URL: https://doi.org/10.1145/3519935.3519980.
  17. Meghal Gupta and Rachel Yun Zhang. Efficient interactive coding achieving optimal error resilience over the binary channel. CoRR, abs/2207.01144, 2022. URL: https://doi.org/10.48550/arXiv.2207.01144.
  18. Meghal Gupta and Rachel Yun Zhang. The optimal error resilience of interactive communication over binary channels. In Stefano Leonardi and Anupam Gupta, editors, STOC '22: 54th Annual ACM SIGACT Symposium on Theory of Computing, Rome, Italy, June 20 - 24, 2022, pages 948-961. ACM, 2022. URL: https://doi.org/10.1145/3519935.3519985.
  19. Meghal Gupta and Rachel Yun Zhang. Positive rate binary interactive error correcting codes resilient to > 1/2 adversarial erasures. CoRR, abs/2201.11929, 2022. https://arxiv.org/abs/2201.11929, URL: https://doi.org/10.48550/arXiv.2201.11929.
  20. Venkatesan Guruswami. List decoding from erasures: bounds and code constructions. IEEE Trans. Inf. Theory, 49(11):2826-2833, 2003. URL: https://doi.org/10.1109/TIT.2003.815776.
  21. Venkatesan Guruswami and Madhu Sudan. List decoding algorithms for certain concatenated codes. In Proceedings of the thirty-second annual ACM symposium on Theory of computing, pages 181-190, 2000. URL: https://doi.org/10.1145/335305.335327.
  22. Gregory Z. Gutin and Anders Yeo. Lower bounds for maximum weighted cut. CoRR, abs/2104.05536, 2021. URL: https://doi.org/10.48550/arXiv.2104.05536.
  23. Bernhard Haeupler, Pritish Kamath, and Ameya Velingker. Communication with partial noiseless feedback. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM), volume 40 of LIPIcs, pages 881-897, 2015. URL: https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2015.881.
  24. Michael Horstein. Sequential transmission using noiseless feedback. IEEE Transactions on Information Theory, 9(3):136-143, 1963. URL: https://doi.org/10.1109/TIT.1963.1057832.
  25. M. Plotkin. Binary codes with specified minimum distance. IRE Transactions on Information Theory, 6(4):445-450, 1960. URL: https://doi.org/10.1109/TIT.1960.1057584.
  26. Svatopluk Poljak and Daniel Turzík. A polynomial time heuristic for certain subgraph optimization problems with guaranteed worst case bound. Discrete Mathematics, 58(1):99-104, 1986. URL: https://doi.org/10.1016/0012-365X(86)90192-5.
  27. Anant Sahai. Why do block length and delay behave differently if feedback is present? IEEE Transactions on Information Theory, 54(5):1860-1886, 2008. URL: https://doi.org/10.1109/TIT.2008.920339.
  28. Leonard J Schulman. Communication on noisy channels: A coding theorem for computation. In Foundations of Computer Science (FOCS), pages 724-733, 1992. URL: https://doi.org/10.1109/SFCS.1992.267778.
  29. Leonard J Schulman. Deterministic coding for interactive communication. In Symposium on Theory of computing (STOC), pages 747-756, 1993. URL: https://doi.org/10.1145/167088.167279.
  30. Leonard J. Schulman. Coding for interactive communication. IEEE Transactions on Information Theory, 42(6):1745-1756, 1996. URL: https://doi.org/10.1109/18.556671.
  31. Claude E. Shannon. The zero error capacity of a noisy channel. IRE Transactions on Information Theory, 2(3):8-19, 1956. URL: https://doi.org/10.1109/TIT.1956.1056798.
  32. Ofer Shayevitz. On error correction with feedback under list decoding. In IEEE International Symposium on Information Theory, ISIT, pages 1253-1257, 2009. URL: https://doi.org/10.1109/ISIT.2009.5205965.
  33. Ofer Shayevitz and Meir Feder. Optimal feedback communication via posterior matching. IEEE Transactions on Information Theory, 57(3):1186-1222, 2011. URL: https://doi.org/10.1109/TIT.2011.2104992.
  34. Ofer Shayevitz and Michèle A. Wigger. On the capacity of the discrete memoryless broadcast channel with feedback. IEEE Transactions on Information Theory, 59(3):1329-1345, 2013. URL: https://doi.org/10.1109/TIT.2012.2227670.
  35. Joel Spencer, Peter Winkler, and South St. Three thresholds for a liar. Combinatorics, Probability and Computing, 1:81-93, 1992. URL: https://doi.org/10.1017/S0963548300000080.
  36. Gang Wang, Yanyuan Qin, and Chengjuan Chang. Communication with partial noisy feedback. In IEEE Symposium on Computers and Communications (ISCC), pages 602-607, 2017. URL: https://doi.org/10.1109/ISCC.2017.8024594.
  37. Norbert Wiener. Cybernetics or Control and Communication in the Animal and the Machine. MIT press, 2019. Google Scholar
  38. John M Wozencraft. List decoding. Quarterly Progress Report, 48:90-95, 1958. Google Scholar
  39. K.Sh. Zigangirov. On the number of correctable errors for transmission over a binary symmetrical channel with feedback. Problems of Information Transmission, 12:85-97, 1976. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail