We initiate the study of the randomness complexity of differential privacy, i.e., how many random bits an algorithm needs in order to generate accurate differentially private releases. As a test case, we focus on the task of releasing the results of d counting queries, or equivalently all one-way marginals on a d-dimensional dataset with boolean attributes. While standard differentially private mechanisms for this task have randomness complexity that grows linearly with d, we show that, surprisingly, only log₂ d+O(1) random bits (in expectation) suffice to achieve an error that depends polynomially on d (and is independent of the size n of the dataset), and furthermore this is possible with pure, unbounded differential privacy and privacy-loss parameter ε = 1/poly(d). Conversely, we show that at least log₂ d-O(1) random bits are also necessary for nontrivial accuracy, even with approximate, bounded DP, provided the privacy-loss parameters satisfy ε,δ ≤ 1/poly(d). We obtain our results by establishing a close connection between the randomness complexity of differentially private mechanisms and the geometric notion of "deterministic rounding schemes" recently introduced and studied by Vander Woude et al. (2022, 2023).
@InProceedings{canonne_et_al:LIPIcs.ITCS.2025.27, author = {Canonne, Cl\'{e}ment L. and Su, Francis E. and Vadhan, Salil P.}, title = {{The Randomness Complexity of Differential Privacy}}, booktitle = {16th Innovations in Theoretical Computer Science Conference (ITCS 2025)}, pages = {27:1--27:21}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-361-4}, ISSN = {1868-8969}, year = {2025}, volume = {325}, editor = {Meka, Raghu}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2025.27}, URN = {urn:nbn:de:0030-drops-226556}, doi = {10.4230/LIPIcs.ITCS.2025.27}, annote = {Keywords: differential privacy, randomness, geometry} }
Feedback for Dagstuhl Publishing