Succinct Fermion Data Structures

Authors Joseph Carolan , Luke Schaeffer



PDF
Thumbnail PDF

File

LIPIcs.ITCS.2025.32.pdf
  • Filesize: 0.83 MB
  • 21 pages

Document Identifiers

Author Details

Joseph Carolan
  • University of Maryland, College Park, MD, USA
Luke Schaeffer
  • University of Waterloo, Canada

Acknowledgements

The authors thank James Watson for helpful conversation about fermion encodings, and Andrew Childs for providing feedback on an early draft of this manuscript. LS thanks the Joint Center for Quantum Information and Computer Science (QuICS) where a large portion of this research occurred.

Cite As Get BibTex

Joseph Carolan and Luke Schaeffer. Succinct Fermion Data Structures. In 16th Innovations in Theoretical Computer Science Conference (ITCS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 325, pp. 32:1-32:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025) https://doi.org/10.4230/LIPIcs.ITCS.2025.32

Abstract

Simulating fermionic systems on a quantum computer requires representing fermionic states using qubits. The complexity of many simulation algorithms depends on the complexity of implementing rotations generated by fermionic creation-annihilation operators, and the space depends on the number of qubits used. While standard fermion encodings like Jordan-Wigner are space optimal for arbitrary fermionic systems, physical symmetries like particle conservation can reduce the number of physical configurations, allowing improved space complexity. Such space saving is only feasible if the gate overhead is small, suggesting a (quantum) data structures problem, wherein one would like to minimize space used to represent a fermionic state, while still enabling efficient rotations. 
We define a structure which naturally captures mappings from fermions to systems of qubits. We then instantiate it in two ways, giving rise to two new second-quantized fermion encodings of F fermions in M modes. An information theoretic minimum of I: = ⌈log₂ binom(M,F)⌉ qubits is required for such systems, a bound we nearly match over the entire parameter regime.  
1) Our first construction uses I + o(I) qubits when F = o(M), and allows rotations generated by creation-annihilation operators in O(I) gates and O(log M log log M) depth. 
2) Our second construction uses I + O(1) qubits when F = Θ(M), and allows rotations generated by creation-annihilation operators in O(I³) gates.  In relation to comparable prior work, the first represents a polynomial improvement in both space and gate complexity (against Kirby et al. 2022), and the second represents an exponential improvement in gate complexity at the cost of only a constant number of additional qubits (against Harrison et al. or Shee et al. 2022), in the described parameter regimes.

Subject Classification

ACM Subject Classification
  • Theory of computation → Quantum computation theory
  • Theory of computation → Data compression
Keywords
  • quantum computing
  • data structures
  • fermion encodings

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Ryan Babbush, Dominic W. Berry, Jarrod R. McClean, and Hartmut Neven. Quantum simulation of chemistry with sublinear scaling in basis size. npj Quantum Information, 5(1):92, November 2019. URL: https://doi.org/10.1038/s41534-019-0199-y.
  2. Ryan Babbush, Dominic W Berry, Yuval R Sanders, Ian D Kivlichan, Artur Scherer, Annie Y Wei, Peter J Love, and Alán Aspuru-Guzik. Exponentially more precise quantum simulation of fermions in the configuration interaction representation. Quantum Science and Technology, 3(1):015006, December 2017. URL: https://doi.org/10.1088/2058-9565/aa9463.
  3. D. W. Berry, A. M. Childs, and R. Kothari. Hamiltonian simulation with nearly optimal dependence on all parameters. In 2015 IEEE 56th Annual Symposium on Foundations of Computer Science (FOCS), pages 792-809, Los Alamitos, CA, USA, October 2015. IEEE Computer Society. URL: https://doi.org/10.1109/FOCS.2015.54.
  4. Dominic W. Berry, Andrew M. Childs, Richard Cleve, Robin Kothari, and Rolando D. Somma. Simulating hamiltonian dynamics with a truncated taylor series. Phys. Rev. Lett., 114:090502, March 2015. URL: https://doi.org/10.1103/PhysRevLett.114.090502.
  5. Dominic W. Berry, Andrew M. Childs, Yuan Su, Xin Wang, and Nathan Wiebe. Time-dependent Hamiltonian simulation with L¹-norm scaling. Quantum, 4:254, April 2020. URL: https://doi.org/10.22331/q-2020-04-20-254.
  6. Sergey Bravyi, Jay M. Gambetta, Antonio Mezzacapo, and Kristan Temme. Tapering off qubits to simulate fermionic Hamiltonians, 2017. URL: https://arxiv.org/abs/1701.08213.
  7. Sergey B. Bravyi and Alexei Yu Kitaev. Fermionic Quantum Computation. Annals of Physics, 298(1):210-226, May 2002. URL: https://doi.org/10.1006/aphy.2002.6254.
  8. Harry Buhrman, Bruno Loff, Subhasree Patro, and Florian Speelman. Memory compression with quantum random-access gates. In Theory of Quantum Computation, Communication, and Cryptography, 2022. URL: https://api.semanticscholar.org/CorpusID:247411405.
  9. Earl Campbell. Random compiler for fast Hamiltonian simulation. Phys. Rev. Lett., 123:070503, August 2019. URL: https://doi.org/10.1103/PhysRevLett.123.070503.
  10. Andrew M. Childs and Nathan Wiebe. Hamiltonian simulation using linear combinations of unitary operations. Quantum Info. Comput., 12(11–12):901-924, November 2012. URL: https://doi.org/10.26421/QIC12.11-12-1.
  11. Charles Derby, Joel Klassen, Johannes Bausch, and Toby Cubitt. Compact fermion to qubit mappings. Phys. Rev. B, 104:035118, July 2021. URL: https://doi.org/10.1103/PhysRevB.104.035118.
  12. Anna Gál and Peter Bro Miltersen. The cell probe complexity of succinct data structures. Theoretical Computer Science, 379(3):405-417, 2007. Automata, Languages and Programming. URL: https://doi.org/10.1016/j.tcs.2007.02.047.
  13. Craig Gidney. Quantum dictionaries without QRAM, 2022. URL: https://arxiv.org/abs/2204.13835.
  14. Brent Harrison, Dylan Nelson, Daniel Adamiak, and James Whitfield. Reducing the qubit requirement of Jordan-Wigner encodings of N-mode, K-fermion systems from N to ⌈ log₂ binom(N,K) ⌉, November 2022. URL: https://arxiv.org/abs/2211.04501.
  15. Guy Joseph Jacobson. Succinct static data structures. PhD thesis, Carnegie Mellon University, USA, 1988. AAI8918056. Google Scholar
  16. Samuel Jaques and Arthur G. Rattew. Qram: A survey and critique, 2023. URL: https://arxiv.org/abs/2305.10310.
  17. P. Jordan and E. Wigner. On the Paulian prohibition of equivalence. Z. Physik, 47:631-651, 1928. URL: https://doi.org/10.1007/BF01331938.
  18. Ivan Kassal, Stephen P. Jordan, Peter J. Love, Masoud Mohseni, and Alán Aspuru-Guzik. Polynomial-time quantum algorithm for the simulation of chemical dynamics. Proceedings of the National Academy of Sciences, 105(48):18681-18686, 2008. URL: https://doi.org/10.1073/pnas.0808245105.
  19. William Kirby, Bryce Fuller, Charles Hadfield, and Antonio Mezzacapo. Second-quantized fermionic operators with polylogarithmic qubit and gate complexity. PRX Quantum, 3:020351, June 2022. URL: https://doi.org/10.1103/PRXQuantum.3.020351.
  20. Guang Hao Low and Isaac L. Chuang. Optimal hamiltonian simulation by quantum signal processing. Phys. Rev. Lett., 118:010501, January 2017. URL: https://doi.org/10.1103/PhysRevLett.118.010501.
  21. Guang Hao Low and Isaac L. Chuang. Hamiltonian Simulation by Qubitization. Quantum, 3:163, July 2019. URL: https://doi.org/10.22331/q-2019-07-12-163.
  22. Gonzalo Navarro. Compact Data Structures: A Practical Approach. Cambridge University Press, 2016. Google Scholar
  23. Yu Shee, Pei-Kai Tsai, Cheng-Lin Hong, Hao-Chung Cheng, and Hsi-Sheng Goan. Qubit-efficient encoding scheme for quantum simulations of electronic structure. Phys. Rev. Res., 4:023154, May 2022. URL: https://doi.org/10.1103/PhysRevResearch.4.023154.
  24. Mark Steudtner. Methods to simulate fermions on quantum computers with hardware limitations. PhD thesis, Leiden University, 2019. Google Scholar
  25. Mark Steudtner and Stephanie Wehner. Fermion-to-qubit mappings with varying resource requirements for quantum simulation. New Journal of Physics, 20(6):063010, June 2018. URL: https://doi.org/10.1088/1367-2630/aac54f.
  26. Yuan Su, Dominic W. Berry, Nathan Wiebe, Nicholas Rubin, and Ryan Babbush. Fault-tolerant quantum simulations of chemistry in first quantization. PRX Quantum, 2:040332, November 2021. URL: https://doi.org/10.1103/PRXQuantum.2.040332.
  27. Yuan Su, Hsin-Yuan Huang, and Earl T. Campbell. Nearly tight Trotterization of interacting electrons. Quantum, 5:495, July 2021. URL: https://doi.org/10.22331/q-2021-07-05-495.
  28. Matthias Troyer and Uwe-Jens Wiese. Computational complexity and fundamental limitations to fermionic quantum monte carlo simulations. Phys. Rev. Lett., 94:170201, May 2005. URL: https://doi.org/10.1103/PhysRevLett.94.170201.
  29. F Verstraete and J I Cirac. Mapping local Hamiltonians of fermions to local Hamiltonians of spins. Journal of Statistical Mechanics: Theory and Experiment, 2005(09):P09012, September 2005. URL: https://doi.org/10.1088/1742-5468/2005/09/P09012.
  30. James D. Whitfield, Vojtěch Havlíček, and Matthias Troyer. Local spin operators for fermion simulations. Phys. Rev. A, 94:030301, September 2016. URL: https://doi.org/10.1103/PhysRevA.94.030301.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail