Bosonic Quantum Computational Complexity

Authors Ulysse Chabaud , Michael Joseph, Saeed Mehraban , Arsalan Motamedi



PDF
Thumbnail PDF

File

LIPIcs.ITCS.2025.33.pdf
  • Filesize: 0.85 MB
  • 19 pages

Document Identifiers

Author Details

Ulysse Chabaud
  • DIENS, ENS, PSL University, CNRS, INRIA, Paris, France
Michael Joseph
  • Department of Computer Science, Tufts University, Medford, MA, USA
Saeed Mehraban
  • Department of Computer Science, Tufts University, Medford, MA, USA
Arsalan Motamedi
  • Institute for Quantum Computing, Waterloo, Canada

Acknowledgements

U.C. acknowledges inspiring discussions with F. Arzani, R. I. Booth, F. Grosshans, D. Markham, O. Bournez, S. Lloyd, T. Vidick, W. Slofstra, L. Lami, and A. Winter. S.M. thanks A. Natarajan, P. Love, V. Podolskii, V.V. Albert, M. Hafezi, A. Gorshkov, D. Jacobs, and J. Jeang for inspiring discussions. A.M. acknowledges discussions with P. Sinha, Z. Mann, and R. Cleve. M. J. thanks V. Podolskii, D. Jacobs, W. Khangtragool and A. Saha for helpful exchanges. The authors are grateful to S. Aaronson for helpful discussions and to T. Vidick and F. Grosshans for comments on earlier versions of this manuscript.

Cite As Get BibTex

Ulysse Chabaud, Michael Joseph, Saeed Mehraban, and Arsalan Motamedi. Bosonic Quantum Computational Complexity. In 16th Innovations in Theoretical Computer Science Conference (ITCS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 325, pp. 33:1-33:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025) https://doi.org/10.4230/LIPIcs.ITCS.2025.33

Abstract

In recent years, quantum computing involving physical systems with continuous degrees of freedom, such as the bosonic quantum states of light, has attracted significant interest. However, a well-defined quantum complexity theory for these bosonic computations over infinite-dimensional Hilbert spaces is missing. In this work, we lay the foundations for such a research program. We introduce natural complexity classes and problems based on bosonic generalizations of BQP, the local Hamiltonian problem, and QMA. We uncover several relationships and subtle differences between standard Boolean classical and discrete-variable quantum complexity classes, and identify outstanding open problems. Our main contributions include the following:  
1) Bosonic computations. We show that the power of Gaussian computations up to logspace reductions is equivalent to bounded-error quantum logspace (BQL, characterized by the problem of inverting well-conditioned matrices). More generally, we define classes of continuous-variable quantum polynomial time computations with a bounded probability of error (CVBQP) based on gates generated by polynomial bosonic Hamiltonians and particle-number measurements. Due to the infinite-dimensional Hilbert space, it is not a priori clear whether a decidable upper bound can be obtained for these classes. We identify complete problems for these classes, and we demonstrate a BQP lower bound and an EXPSPACE upper bound by proving bounds on the average energy throughout the computation. We further show that the problem of computing expectation values of polynomial bosonic observables at the output of bosonic quantum circuits using Gaussian and cubic phase gates is in PSPACE. 
2) Bosonic ground energy problems. We prove that the problem of deciding whether the spectrum of a bosonic Hamiltonian is bounded from below is co-NP-hard. Furthermore, we show that the problem of finding the minimum energy of a bosonic Hamiltonian critically depends on the non-Gaussian stellar rank of the family of energy-constrained states one optimizes over: for zero stellar rank, i.e., optimizing over Gaussian states, it is NP-complete; for polynomially-bounded stellar rank, it is in QMA; for unbounded stellar rank, it is RE-hard, i.e., undecidable.

Subject Classification

ACM Subject Classification
  • Theory of computation → Quantum information theory
  • Theory of computation → Quantum complexity theory
Keywords
  • continuous-variable quantum computing
  • infinite-dimensional quantum systems
  • stellar rank
  • Hamiltonian complexity

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Scott Aaronson and Alex Arkhipov. The computational complexity of linear optics. In https://dl.acm.org/doi/10.1145/1993636.1993682, pages 333-342, 2011. URL: https://doi.org/10.1145/1993636.1993682.
  2. Scott Aaronson and Daniel Gottesman. Improved simulation of stabilizer circuits. Physical Review A, 70(5):052328, 2004. URL: https://doi.org/10.1103/PhysRevA.70.052328.
  3. Alice Barthe, M Cerezo, Andrew T Sornborger, Martin Larocca, and Diego García-Martín. Gate-based quantum simulation of Gaussian bosonic circuits on exponentially many modes. arXiv preprint, 2024. URL: https://doi.org/10.48550/arXiv.2407.06290.
  4. Stephen D Bartlett, Barry C Sanders, Samuel L Braunstein, and Kae Nemoto. Efficient classical simulation of continuous variable quantum information processes. Physical Review Letters, 88(9):097904, 2002. URL: https://doi.org/10.1103/PhysRevLett.88.097904.
  5. Simon Becker, Nilanjana Datta, Ludovico Lami, and Cambyse Rouzé. Energy-constrained discrimination of unitaries, quantum speed limits, and a Gaussian Solovay-Kitaev theorem. Physical Review Letters, 126(19):190504, 2021. URL: https://doi.org/10.1103/PhysRevLett.126.190504.
  6. Lenore Blum, Felipe Cucker, Mike Shub, and Steve Smale. Complexity and real computation. Springer Science & Business Media, 1998. URL: https://doi.org/10.1007/978-1-4612-0701-6.
  7. Sergey Bravyi, Graeme Smith, and John A Smolin. Trading classical and quantum computational resources. Physical Review X, 6(2):021043, 2016. URL: https://doi.org/10.1103/PhysRevX.6.021043.
  8. Ulysse Chabaud, Michael Joseph, Saeed Mehraban, and Arsalan Motamedi. Bosonic quantum computational complexity. arXiv preprint, 2024. URL: https://doi.org/10.48550/arXiv.2410.04274.
  9. Ulysse Chabaud, Damian Markham, and Frédéric Grosshans. Stellar representation of non-Gaussian quantum states. Physical Review Letters, 124(6):063605, 2020. URL: https://doi.org/10.1103/PhysRevLett.124.063605.
  10. Ulysse Chabaud and Saeed Mehraban. Holomorphic representation of quantum computations. https://doi.org/10.22331/q-2022-10-06-831, 6:831, 2022. URL: https://doi.org/10.22331/Q-2022-10-06-831.
  11. Andrew M Childs, David Gosset, and Zak Webb. The Bose-Hubbard model is QMA-complete. In https://doi.org/10.1007/978-3-662-43948-7_26, pages 308-319. Springer, 2014.
  12. Carsten Damm. Problems complete for ⊕L. In Aspects and Prospects of Theoretical Computer Science: 6th International Meeting of Young Computer Scientists Smolenice, Czechoslovakia, November 19-23, 1990 Proceedings 6, pages 130-137. Springer, 1990. URL: https://doi.org/10.1016/0020-0190(90)90150-V.
  13. Christopher M Dawson and Michael A Nielsen. The Solovay-Kitaev algorithm. arXiv preprint quant-ph/0505030, 2005. URL: https://doi.org/10.48550/arXiv.quant-ph/0505030.
  14. Danial Dervovic, Mark Herbster, Peter Mountney, Simone Severini, Naïri Usher, and Leonard Wossnig. Quantum linear systems algorithms: a primer. arXiv preprint, 2018. URL: https://doi.org/10.48550/arXiv.1802.08227.
  15. Beatriz Dias and Robert Koenig. Classical simulation of non-Gaussian bosonic circuits. arXiv preprint, 2024. URL: https://doi.org/10.48550/arXiv.2403.1905.
  16. Bill Fefferman and Zachary Remscrim. Eliminating intermediate measurements in space-bounded quantum computation. In Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing, pages 1343-1356, 2021. URL: https://doi.org/10.1145/3406325.3451051.
  17. Alessandro Ferraro, Stefano Olivares, and Matteo GA Paris. Gaussian states in continuous variable quantum information. arXiv preprint, 2005. URL: https://doi.org/10.48550/arXiv.quant-ph/0503237.
  18. LH Ford. Negative energy densities in quantum field theory. International Journal of Modern Physics A, 25(11):2355-2363, 2010. URL: https://doi.org/10.1142/S0217751X10049633.
  19. Daniel Gottesman. The Heisenberg representation of quantum computers. arXiv preprint, 1998. URL: https://doi.org/10.48550/arXiv.quant-ph/9807006.
  20. Daniel Gottesman, Alexei Kitaev, and John Preskill. Encoding a qubit in an oscillator. Physical Review A, 64(1):012310, 2001. URL: https://doi.org/10.1103/PhysRevA.64.012310.
  21. Arne L Grimsmo and Shruti Puri. Quantum error correction with the Gottesman-Kitaev-Preskill code. PRX Quantum, 2(2):020101, 2021. URL: https://doi.org/10.1103/PRXQuantum.2.020101.
  22. Oliver Hahn, Ryuji Takagi, Giulia Ferrini, and Hayata Yamasaki. Classical simulation and quantum resource theory of non-Gaussian optics. arXiv preprint, 2024. URL: https://doi.org/10.48550/arXiv.2404.07115.
  23. Matthew B Hastings. Perturbation theory and the sum of squares. arXiv preprint arXiv:2205.12325, 2022. URL: https://doi.org/10.48550/arXiv.2205.12325.
  24. Zhengfeng Ji, Anand Natarajan, Thomas Vidick, John Wright, and Henry Yuen. MIP*= RE. Communications of the ACM, 64(11):131-138, 2021. URL: https://doi.org/10.48550/arXiv.2001.04383.
  25. James P Jones. Three universal representations of recursively enumerable sets. The Journal of Symbolic Logic, 43(3):549-571, 1978. URL: https://doi.org/10.2307/2272832.
  26. Timjan Kalajdzievski and Juan Miguel Arrazola. Exact gate decompositions for photonic quantum computing. Physical Review A, 99(2):022341, 2019. URL: https://doi.org/10.1103/PhysRevA.99.022341.
  27. Timjan Kalajdzievski and Nicolás Quesada. Exact and approximate continuous-variable gate decompositions. Quantum, 5:394, 2021. URL: https://doi.org/10.22331/Q-2021-02-08-394.
  28. Julia Kempe, Alexei Kitaev, and Oded Regev. The complexity of the local hamiltonian problem. FSTTCS 2004. Lecture Notes in Computer Science, vol 3328, 2004. URL: https://doi.org/10.1007/978-3-540-30538-5_31.
  29. Julia Kempe and Oded Regev. 3-local hamiltonian is QMA-complete. arXiv preprint, 2003. URL: https://doi.org/10.48550/arXiv.quant-ph/0302079.
  30. Tien D Kieu. Quantum algorithm for Hilbert’s tenth problem. International Journal of Theoretical Physics, 42:1461-1478, 2003. URL: https://doi.org/10.1023/A:1025780028846.
  31. A Yu Kitaev. Quantum computations: algorithms and error correction. Russian Mathematical Surveys, 52(6):1191, 1997. URL: https://doi.org/10.1070/RM1997v052n06ABEH002155.
  32. Emanuel Knill, Raymond Laflamme, and Gerald J Milburn. A scheme for efficient quantum computation with linear optics. Nature, 409(6816):46-52, 2001. URL: https://doi.org/10.1038/35051009.
  33. Seth Lloyd and Samuel L Braunstein. Quantum computation over continuous variables. Physical Review Letters, 82(8):1784, 1999. URL: https://doi.org/10.1103/PhysRevLett.82.1784.
  34. Lars S Madsen, Fabian Laudenbach, Mohsen Falamarzi Askarani, Fabien Rortais, Trevor Vincent, Jacob FF Bulmer, Filippo M Miatto, Leonhard Neuhaus, Lukas G Helt, Matthew J Collins, et al. Quantum computational advantage with a programmable photonic processor. Nature, 606(7912):75-81, 2022. URL: https://doi.org/10.1038/s41586-022-04725-x.
  35. R Vilela Mendes and Vladimir I Man'ko. On the problem of quantum control in infinite dimensions. Journal of Physics A: Mathematical and Theoretical, 44(13):135302, 2011. URL: https://doi.org/10.1088/1751-8113/44/13/135302.
  36. Katta G. Murty and Santosh N. Kabadi. Some NP-complete problems in quadratic and nonlinear programming. Mathematical Programming, 39(2):117-129, 1987. URL: https://doi.org/10.1007/BF02592948.
  37. Michael A Nielsen and Isaac L Chuang. Quantum computation and quantum information. Phys. Today, 54(2):60, 2001. URL: https://doi.org/10.1017/CBO9780511976667.
  38. Pablo A Parrilo. Semidefinite programming relaxations for semialgebraic problems. Mathematical programming, 96:293-320, 2003. URL: https://doi.org/10.1007/S10107-003-0387-5.
  39. Bo Peng, Yuan Su, Daniel Claudino, Karol Kowalski, Guang Hao Low, and Martin Roetteler. Quantum simulation of boson-related hamiltonians: techniques, effective hamiltonian construction, and error analysis. arXiv preprint, 2023. URL: https://doi.org/10.48550/arXiv.2307.06580.
  40. Seckin Sefi and Peter Van Loock. How to decompose arbitrary continuous-variable quantum operations. Physical review letters, 107(17):170501, 2011. URL: https://doi.org/10.1103/PhysRevLett.107.170501.
  41. Paolo Stornati, Antonio Acin, Ulysse Chabaud, Alexandre Dauphin, Valentina Parigi, and Federico Centrone. Variational quantum simulation using non-Gaussian continuous-variable systems. arXiv preprint, 2023. URL: https://doi.org/10.48550/arXiv.2310.15919.
  42. Amnon Ta-Shma. Inverting well conditioned matrices in quantum logspace. In Proceedings of the forty-fifth annual ACM symposium on Theory of computing, pages 881-890, 2013. URL: https://doi.org/10.1145/2488608.2488720.
  43. Jerry L Trahan, Michael C Loui, and Vijaya Ramachandran. Multiplication, division, and shift instructions in parallel random access machines. Theoretical computer science, 100(1):1-44, 1992. URL: https://doi.org/10.1016/0304-3975(92)90362-J.
  44. John Watrous. Quantum computational complexity. arXiv preprint, 2008. URL: https://doi.org/10.48550/arXiv.0804.3401.
  45. Re-Bing Wu, Tzyh-Jong Tarn, and Chun-Wen Li. Smooth controllability of infinite-dimensional quantum-mechanical systems. Physical Review A, 73(1):012719, 2006. URL: https://doi.org/10.1103/PhysRevA.73.012719.
  46. Han-Sen Zhong, Hui Wang, Yu-Hao Deng, Ming-Cheng Chen, Li-Chao Peng, Yi-Han Luo, Jian Qin, Dian Wu, Xing Ding, Yi Hu, et al. Quantum computational advantage using photons. Science, 370(6523):1460-1463, 2020. URL: https://doi.org/10.1126/science.abe8770.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail