Concentration of Submodular Functions and Read-k Families Under Negative Dependence

Authors Sharmila Duppala , George Z. Li , Juan Luque, Aravind Srinivasan , Renata Valieva



PDF
Thumbnail PDF

File

LIPIcs.ITCS.2025.47.pdf
  • Filesize: 0.67 MB
  • 16 pages

Document Identifiers

Author Details

Sharmila Duppala
  • University of Maryland, College Park, MD, USA
George Z. Li
  • Carnegie Mellon University, Pittsburgh, PA, USA
Juan Luque
  • University of Maryland, College Park, MD, USA
Aravind Srinivasan
  • University of Maryland, College Park, MD, USA
Renata Valieva
  • University of Maryland, College Park, MD, USA

Acknowledgements

We thank the ITCS 2025 reviewers for their thoughtful comments.

Cite As Get BibTex

Sharmila Duppala, George Z. Li, Juan Luque, Aravind Srinivasan, and Renata Valieva. Concentration of Submodular Functions and Read-k Families Under Negative Dependence. In 16th Innovations in Theoretical Computer Science Conference (ITCS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 325, pp. 47:1-47:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025) https://doi.org/10.4230/LIPIcs.ITCS.2025.47

Abstract

We study the question of whether submodular functions of random variables satisfying various notions of negative dependence satisfy Chernoff-like concentration inequalities. We prove such a concentration inequality for the lower tail when the random variables satisfy negative association or negative regression, partially resolving an open problem raised in ([Frederick Qiu and Sahil Singla, 2022]). Previous work showed such concentration results for random variables that come from specific dependent-rounding algorithms ([Chandra Chekuri et al., 2010; Nicholas J. A. Harvey and Neil Olver, 2014]). We discuss some applications of our results to combinatorial optimization and beyond. We also show applications to the concentration of read-k families [Dmitry Gavinsky et al., 2015] under certain forms of negative dependence; we further show a simplified proof of the entropy-method approach of [Dmitry Gavinsky et al., 2015].

Subject Classification

ACM Subject Classification
  • Mathematics of computing → Probabilistic algorithms
Keywords
  • Chernoff bounds
  • Submodular Functions
  • Negative Correlation

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Zeyuan Allen-Zhu and Lorenzo Orecchia. Nearly-linear time positive lp solver with faster convergence rate. In Proceedings of the Forty-Seventh Annual ACM Symposium on Theory of Computing, STOC '15, pages 229-236. Association for Computing Machinery, 2015. URL: https://doi.org/10.1145/2746539.2746573.
  2. Noga Alon and Joel H. Spencer. The Probabilistic Method, Third Edition. Wiley-Interscience series in discrete mathematics and optimization. Wiley, 2008. Google Scholar
  3. Kazuoki Azuma. Weighted sums of certain dependent random variables. Tohoku Mathematical Journal, 19(3):357-367, 1967. URL: https://doi.org/10.2748/tmj/1178243286.
  4. Julius Borcea, Petter Brändén, and Thomas M. Liggett. Negative dependence and the geometry of polynomials. Journal of the American Mathematical Society, 22(2):521-567, 2009. URL: http://www.jstor.org/stable/40587241.
  5. Chandra Chekuri and Kent Quanrud. Submodular function maximization in parallel via the multilinear relaxation. In Timothy M. Chan, editor, Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2019, San Diego, California, USA, January 6-9, 2019, pages 303-322. SIAM, 2019. URL: https://doi.org/10.1137/1.9781611975482.20.
  6. Chandra Chekuri, Jan Vondrák, and Rico Zenklusen. Dependent randomized rounding via exchange properties of combinatorial structures. In 51th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2010, pages 575-584. IEEE Computer Society, 2010. URL: https://doi.org/10.1109/FOCS.2010.60.
  7. Herman Chernoff. A Measure of Asymptotic Efficiency for Tests of a Hypothesis Based on the sum of Observations. The Annals of Mathematical Statistics, 23(4):493-507, 1952. URL: https://doi.org/10.1214/aoms/1177729330.
  8. Devdatt Dubhashi and Desh Ranjan. Balls and bins: a study in negative dependence. Random Struct. Algorithms, 13(2):99-124, September 1998. URL: https://doi.org/10.1002/(SICI)1098-2418(199809)13:2%3C99::AID-RSA1%3E3.0.CO;2-M.
  9. Devdatt P. Dubhashi and Alessandro Panconesi. Concentration of Measure for the Analysis of Randomized Algorithms. Cambridge University Press, 2009. URL: http://www.cambridge.org/gb/knowledge/isbn/item2327542/.
  10. Tomás Feder and Milena Mihail. Balanced matroids. In S. Rao Kosaraju, Mike Fellows, Avi Wigderson, and John A. Ellis, editors, Proceedings of the 24th Annual ACM Symposium on Theory of Computing, STOC 1992, pages 26-38. ACM, 1992. URL: https://doi.org/10.1145/129712.129716.
  11. Rajiv Gandhi, Samir Khuller, Srinivasan Parthasarathy, and Aravind Srinivasan. Dependent rounding and its applications to approximation algorithms. J. ACM, 53(3):324-360, 2006. URL: https://doi.org/10.1145/1147954.1147956.
  12. Kevin Garbe and Jan Vondrák. Concentration of lipschitz functions of negatively dependent variables, 2018. URL: https://arxiv.org/abs/1804.10084.
  13. Dmitry Gavinsky, Shachar Lovett, Michael E. Saks, and Srikanth Srinivasan. A tail bound for read-k families of functions. Random Struct. Algorithms, 47(1):99-108, 2015. URL: https://doi.org/10.1002/rsa.20532.
  14. Nicholas J. A. Harvey and Neil Olver. Pipage rounding, pessimistic estimators and matrix concentration. In Chandra Chekuri, editor, Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2014, pages 926-945. SIAM, 2014. URL: https://doi.org/10.1137/1.9781611973402.69.
  15. Wassily Hoeffding. Probability inequalities for sums of bounded random variables. Journal of the American Statistical Association, 58(301):13-30, 1963. URL: http://www.jstor.org/stable/2282952.
  16. Anna R. Karlin, Nathan Klein, and Shayan Oveis Gharan. A (slightly) improved approximation algorithm for metric TSP. In Samir Khuller and Virginia Vassilevska Williams, editors, STOC '21: 53rd Annual ACM SIGACT Symposium on Theory of Computing, pages 32-45. ACM, 2021. URL: https://doi.org/10.1145/3406325.3451009.
  17. Jeong Han Kim and Van H. Vu. Concentration of multivariate polynomials and its applications. Comb., 20(3):417-434, 2000. URL: https://doi.org/10.1007/s004930070014.
  18. Joseph (Seffi) Naor, Aravind Srinivasan, and David Wajc. Online dependent rounding schemes. arXiv preprint, 2024. URL: https://arxiv.org/abs/2301.08680.
  19. Charles M. Newman. Asymptotic independence and limit theorems for positively and negatively dependent random variables. Lecture Notes-Monograph Series, 5:127-140, 1984. URL: http://www.jstor.org/stable/4355492.
  20. Alessandro Panconesi and Aravind Srinivasan. Randomized distributed edge coloring via an extension of the chernoff-hoeffding bounds. SIAM J. Comput., 26(2):350-368, 1997. URL: https://doi.org/10.1137/S0097539793250767.
  21. Robin Pemantle and Yuval Peres. Concentration of lipschitz functionals of determinantal and other strong rayleigh measures. Comb. Probab. Comput., 23(1):140-160, 2014. URL: https://doi.org/10.1017/S0963548313000345.
  22. Yuval Peres, Mohit Singh, and Nisheeth K. Vishnoi. Random walks in polytopes and negative dependence. In Christos H. Papadimitriou, editor, 8th Innovations in Theoretical Computer Science Conference, ITCS 2017, January 9-11, 2017, Berkeley, CA, USA, volume 67 of LIPIcs, pages 50:1-50:10. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017. URL: https://doi.org/10.4230/LIPIcs.ITCS.2017.50.
  23. Frederick Qiu and Sahil Singla. Submodular dominance and applications. In Amit Chakrabarti and Chaitanya Swamy, editors, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM 2022, volume 245 of LIPIcs, pages 44:1-44:21. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. URL: https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2022.44.
  24. Jeanette P. Schmidt, Alan Siegel, and Aravind Srinivasan. Chernoff-hoeffding bounds for applications with limited independence. SIAM J. Discret. Math., 8(2):223-250, 1995. URL: https://doi.org/10.1137/S089548019223872X.
  25. Maciej Skorski. Tight chernoff-like bounds under limited independence. In Amit Chakrabarti and Chaitanya Swamy, editors, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM 2022, volume 245 of LIPIcs, pages 15:1-15:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. URL: https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2022.15.
  26. Aravind Srinivasan. Distributions on level-sets with applications to approximation algorithms. In 42nd Annual Symposium on Foundations of Computer Science, FOCS 2001, pages 588-597. IEEE Computer Society, 2001. URL: https://doi.org/10.1109/SFCS.2001.959935.
  27. Alan Tsang, Bryan Wilder, Eric Rice, Milind Tambe, and Yair Zick. Group-fairness in influence maximization. In Sarit Kraus, editor, Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence, IJCAI 2019, pages 5997-6005. ijcai.org, 2019. URL: https://doi.org/10.24963/ijcai.2019/831.
  28. Rajan Udwani. Multi-objective maximization of monotone submodular functions with cardinality constraint. In Samy Bengio, Hanna M. Wallach, Hugo Larochelle, Kristen Grauman, Nicolò Cesa-Bianchi, and Roman Garnett, editors, Annual Conference on Neural Information Processing Systems, NeurIPS 2018, pages 9513-9524, 2018. URL: https://proceedings.neurips.cc/paper/2018/hash/7e448ed9dd44e6e22442dac8e21856ae-Abstract.html.
  29. David Wajc. Negative association: Definition, properties, and applications. Manuscript, 2017. URL: https://www.cs.cmu.edu/∼dwajc/notes/Negative%20Association.pdf.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail