LIPIcs.ITCS.2025.47.pdf
- Filesize: 0.67 MB
- 16 pages
We study the question of whether submodular functions of random variables satisfying various notions of negative dependence satisfy Chernoff-like concentration inequalities. We prove such a concentration inequality for the lower tail when the random variables satisfy negative association or negative regression, partially resolving an open problem raised in ([Frederick Qiu and Sahil Singla, 2022]). Previous work showed such concentration results for random variables that come from specific dependent-rounding algorithms ([Chandra Chekuri et al., 2010; Nicholas J. A. Harvey and Neil Olver, 2014]). We discuss some applications of our results to combinatorial optimization and beyond. We also show applications to the concentration of read-k families [Dmitry Gavinsky et al., 2015] under certain forms of negative dependence; we further show a simplified proof of the entropy-method approach of [Dmitry Gavinsky et al., 2015].
Feedback for Dagstuhl Publishing