Completeness Theorems for k-SUM and Geometric Friends: Deciding Fragments of Linear Integer Arithmetic

Authors Geri Gokaj , Marvin Künnemann



PDF
Thumbnail PDF

File

LIPIcs.ITCS.2025.55.pdf
  • Filesize: 0.89 MB
  • 25 pages

Document Identifiers

Author Details

Geri Gokaj
  • Karlsruhe Institute of Technology, Germany
Marvin Künnemann
  • Karlsruhe Institute of Technology, Germany

Acknowledgements

The authors like to thank the reviewers for constructive feedback as well as Karl Bringmann and Nick Fischer for helpful discussions.

Cite As Get BibTex

Geri Gokaj and Marvin Künnemann. Completeness Theorems for k-SUM and Geometric Friends: Deciding Fragments of Linear Integer Arithmetic. In 16th Innovations in Theoretical Computer Science Conference (ITCS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 325, pp. 55:1-55:25, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025) https://doi.org/10.4230/LIPIcs.ITCS.2025.55

Abstract

In the last three decades, the k-SUM hypothesis has emerged as a satisfying explanation of long-standing time barriers for a variety of algorithmic problems. Yet to this day, the literature knows of only few proven consequences of a refutation of this hypothesis. Taking a descriptive complexity viewpoint, we ask: What is the largest logically defined class of problems captured by the k-SUM problem?
To this end, we introduce a class FOP_ℤ of problems corresponding to deciding sentences in Presburger arithmetic/linear integer arithmetic over finite subsets of integers. We establish two large fragments for which the k-SUM problem is complete under fine-grained reductions:  
1) The k-SUM problem is complete for deciding the sentences with k existential quantifiers. 
2) The 3-SUM problem is complete for all 3-quantifier sentences of FOP_ℤ expressible using at most 3 linear inequalities.  Specifically, a faster-than-n^{⌈k/2⌉ ± o(1)} algorithm for k-SUM (or faster-than-n^{2 ± o(1)} algorithm for 3-SUM, respectively) directly translate to polynomial speedups of a general algorithm for all sentences in the respective fragment.
Observing a barrier for proving completeness of 3-SUM for the entire class FOP_ℤ, we turn to the question which other - seemingly more general - problems are complete for FOP_ℤ. In this direction, we establish FOP_ℤ-completeness of the problem pair of Pareto Sum Verification and Hausdorff Distance under n Translations under the L_∞/L₁ norm in ℤ^d. In particular, our results invite to investigate Pareto Sum Verification as a high-dimensional generalization of 3-SUM.

Subject Classification

ACM Subject Classification
  • Theory of computation → Complexity theory and logic
Keywords
  • fine-grained complexity theory
  • descriptive complexity
  • presburger arithmetic
  • completeness results
  • k-SUM

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Amir Abboud, Arturs Backurs, Karl Bringmann, and Marvin Künnemann. Fine-grained complexity of analyzing compressed data: Quantifying improvements over decompress-and-solve. In Chris Umans, editor, 58th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2017, Berkeley, CA, USA, October 15-17, 2017, pages 192-203. IEEE Computer Society, 2017. URL: https://doi.org/10.1109/FOCS.2017.26.
  2. Amir Abboud, Arturs Backurs, Karl Bringmann, and Marvin Künnemann. Impossibility results for grammar-compressed linear algebra. In Hugo Larochelle, Marc'Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin, editors, Advances in Neural Information Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020. URL: https://proceedings.neurips.cc/paper/2020/hash/645e6bfdd05d1a69c5e47b20f0a91d46-Abstract.html.
  3. Amir Abboud, Karl Bringmann, Seri Khoury, and Or Zamir. Hardness of approximation in p via short cycle removal: cycle detection, distance oracles, and beyond. In Stefano Leonardi and Anupam Gupta, editors, STOC '22: 54th Annual ACM SIGACT Symposium on Theory of Computing, Rome, Italy, June 20 - 24, 2022, pages 1487-1500. ACM, 2022. URL: https://doi.org/10.1145/3519935.3520066.
  4. Amir Abboud and Kevin Lewi. Exact weight subgraphs and the k-sum conjecture. In Fedor V. Fomin, Rusins Freivalds, Marta Z. Kwiatkowska, and David Peleg, editors, Automata, Languages, and Programming - 40th International Colloquium, ICALP 2013, Riga, Latvia, July 8-12, 2013, Proceedings, Part I, volume 7965 of Lecture Notes in Computer Science, pages 1-12. Springer, 2013. URL: https://doi.org/10.1007/978-3-642-39206-1_1.
  5. Amir Abboud, Kevin Lewi, and Ryan Williams. Losing weight by gaining edges. In Andreas S. Schulz and Dorothea Wagner, editors, Algorithms - ESA 2014 - 22th Annual European Symposium, Wroclaw, Poland, September 8-10, 2014. Proceedings, volume 8737 of Lecture Notes in Computer Science, pages 1-12. Springer, 2014. URL: https://doi.org/10.1007/978-3-662-44777-2_1.
  6. Amir Abboud and Virginia Vassilevska Williams. Popular conjectures imply strong lower bounds for dynamic problems. In 55th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2014, Philadelphia, PA, USA, October 18-21, 2014, pages 434-443. IEEE Computer Society, 2014. URL: https://doi.org/10.1109/FOCS.2014.53.
  7. Haozhe An, Mohit Gurumukhani, Russell Impagliazzo, Michael Jaber, Marvin Künnemann, and Maria Paula Parga Nina. The fine-grained complexity of multi-dimensional ordering properties. Algorithmica, 84(11):3156-3191, 2022. URL: https://doi.org/10.1007/S00453-022-01014-X.
  8. Christian Artigues, Marie-José Huguet, Fallou Gueye, Frédéric Schettini, and Laurent Dezou. State-based accelerations and bidirectional search for bi-objective multi-modal shortest paths. Transportation Research Part C: Emerging Technologies, 27:233-259, 2013. Google Scholar
  9. Arturs Backurs, Piotr Indyk, and Ludwig Schmidt. Better approximations for tree sparsity in nearly-linear time. In Philip N. Klein, editor, Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2017, Barcelona, Spain, Hotel Porta Fira, January 16-19, pages 2215-2229. SIAM, 2017. URL: https://doi.org/10.1137/1.9781611974782.145.
  10. Stephen A Bloch, Jonathan F Buss, and Judy Goldsmith. How hard are n 2-hard problems? ACM SIGACT News, 25(2):83-85, 1994. URL: https://doi.org/10.1145/181462.181465.
  11. Jean-Daniel Boissonnat, Micha Sharir, Boaz Tagansky, and Mariette Yvinec. Voronoi diagrams in higher dimensions under certain polyhedral distance functions. Discret. Comput. Geom., 19(4):485-519, 1998. URL: https://doi.org/10.1007/PL00009366.
  12. Karl Bringmann, Alejandro Cassis, Nick Fischer, and Marvin Künnemann. Fine-grained completeness for optimization in P. In Mary Wootters and Laura Sanità, editors, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM 2021, August 16-18, 2021, University of Washington, Seattle, Washington, USA (Virtual Conference), volume 207 of LIPIcs, pages 9:1-9:22. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. URL: https://doi.org/10.4230/LIPICS.APPROX/RANDOM.2021.9.
  13. Karl Bringmann, Alejandro Cassis, Nick Fischer, and Marvin Künnemann. A structural investigation of the approximability of polynomial-time problems. In Mikolaj Bojanczyk, Emanuela Merelli, and David P. Woodruff, editors, 49th International Colloquium on Automata, Languages, and Programming, ICALP 2022, July 4-8, 2022, Paris, France, volume 229 of LIPIcs, pages 30:1-30:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. URL: https://doi.org/10.4230/LIPICS.ICALP.2022.30.
  14. Karl Bringmann, Nick Fischer, and Marvin Künnemann. A fine-grained analogue of schaefer’s theorem in P: dichotomy of exists^k-forall-quantified first-order graph properties. In Amir Shpilka, editor, 34th Computational Complexity Conference, CCC 2019, July 18-20, 2019, New Brunswick, NJ, USA, volume 137 of LIPIcs, pages 31:1-31:27. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. URL: https://doi.org/10.4230/LIPICS.CCC.2019.31.
  15. Karl Bringmann, Nick Fischer, and Vasileios Nakos. Sparse nonnegative convolution is equivalent to dense nonnegative convolution. In Samir Khuller and Virginia Vassilevska Williams, editors, STOC '21: 53rd Annual ACM SIGACT Symposium on Theory of Computing, Virtual Event, Italy, June 21-25, 2021, pages 1711-1724. ACM, 2021. URL: https://doi.org/10.1145/3406325.3451090.
  16. Karl Bringmann, Nick Fischer, and Vasileios Nakos. Deterministic and las vegas algorithms for sparse nonnegative convolution. In Joseph (Seffi) Naor and Niv Buchbinder, editors, Proceedings of the 2022 ACM-SIAM Symposium on Discrete Algorithms, SODA 2022, Virtual Conference / Alexandria, VA, USA, January 9 - 12, 2022, pages 3069-3090. SIAM, 2022. URL: https://doi.org/10.1137/1.9781611977073.119.
  17. Karl Bringmann and Vasileios Nakos. Fast n-fold boolean convolution via additive combinatorics. In Nikhil Bansal, Emanuela Merelli, and James Worrell, editors, 48th International Colloquium on Automata, Languages, and Programming, ICALP 2021, July 12-16, 2021, Glasgow, Scotland (Virtual Conference), volume 198 of LIPIcs, pages 41:1-41:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. URL: https://doi.org/10.4230/LIPICS.ICALP.2021.41.
  18. Karl Bringmann and André Nusser. Translating hausdorff is hard: Fine-grained lower bounds for hausdorff distance under translation. In Kevin Buchin and Éric Colin de Verdière, editors, 37th International Symposium on Computational Geometry, SoCG 2021, June 7-11, 2021, Buffalo, NY, USA (Virtual Conference), volume 189 of LIPIcs, pages 18:1-18:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. URL: https://doi.org/10.4230/LIPICS.SOCG.2021.18.
  19. Timothy M. Chan. Minimum l_∞ hausdorff distance of point sets under translation: Generalizing klee’s measure problem. In Erin W. Chambers and Joachim Gudmundsson, editors, 39th International Symposium on Computational Geometry, SoCG 2023, June 12-15, 2023, Dallas, Texas, USA, volume 258 of LIPIcs, pages 24:1-24:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023. URL: https://doi.org/10.4230/LIPICS.SOCG.2023.24.
  20. Timothy M. Chan and Moshe Lewenstein. Clustered integer 3sum via additive combinatorics. In Rocco A. Servedio and Ronitt Rubinfeld, editors, Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory of Computing, STOC 2015, Portland, OR, USA, June 14-17, 2015, pages 31-40. ACM, 2015. URL: https://doi.org/10.1145/2746539.2746568.
  21. Timothy M. Chan, Virginia Vassilevska Williams, and Yinzhan Xu. Hardness for triangle problems under even more believable hypotheses: reductions from real apsp, real 3sum, and OV. In Stefano Leonardi and Anupam Gupta, editors, STOC '22: 54th Annual ACM SIGACT Symposium on Theory of Computing, Rome, Italy, June 20 - 24, 2022, pages 1501-1514. ACM, 2022. URL: https://doi.org/10.1145/3519935.3520032.
  22. Timothy M. Chan, Virginia Vassilevska Williams, and Yinzhan Xu. Fredman’s trick meets dominance product: Fine-grained complexity of unweighted apsp, 3sum counting, and more. In Barna Saha and Rocco A. Servedio, editors, Proceedings of the 55th Annual ACM Symposium on Theory of Computing, STOC 2023, Orlando, FL, USA, June 20-23, 2023, pages 419-432. ACM, 2023. URL: https://doi.org/10.1145/3564246.3585237.
  23. L. Paul Chew, Dorit Dor, Alon Efrat, and Klara Kedem. Geometric pattern matching in d -dimensional space. Discret. Comput. Geom., 21(2):257-274, 1999. URL: https://doi.org/10.1007/PL00009420.
  24. L Paul Chew and Klara Kedem. Improvements on geometric pattern matching problems. In Algorithm Theory—SWAT'92: Third Scandinavian Workshop on Algorithm Theory Helsinki, Finland, July 8-10, 1992 Proceedings 3, pages 318-325. Springer, 1992. URL: https://doi.org/10.1007/3-540-55706-7_28.
  25. L. Paul Chew and Klara Kedem. Improvements on geometric pattern matching problems. In Otto Nurmi and Esko Ukkonen, editors, Algorithm Theory - SWAT '92, Third Scandinavian Workshop on Algorithm Theory, Helsinki, Finland, July 8-10, 1992, Proceedings, volume 621 of Lecture Notes in Computer Science, pages 318-325. Springer, 1992. URL: https://doi.org/10.1007/3-540-55706-7_28.
  26. Richard Cole and Ramesh Hariharan. Verifying candidate matches in sparse and wildcard matching. In John H. Reif, editor, Proceedings on 34th Annual ACM Symposium on Theory of Computing, May 19-21, 2002, Montréal, Québec, Canada, pages 592-601. ACM, 2002. URL: https://doi.org/10.1145/509907.509992.
  27. Marek Cygan, Marcin Mucha, Karol Wegrzycki, and Michal Wlodarczyk. On problems equivalent to (min, +)-convolution. ACM Trans. Algorithms, 15(1):14:1-14:25, 2019. URL: https://doi.org/10.1145/3293465.
  28. Holger Dell, Marc Roth, and Philip Wellnitz. Counting answers to existential questions. In Christel Baier, Ioannis Chatzigiannakis, Paola Flocchini, and Stefano Leonardi, editors, 46th International Colloquium on Automata, Languages, and Programming, ICALP 2019, July 9-12, 2019, Patras, Greece, volume 132 of LIPIcs, pages 113:1-113:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. URL: https://doi.org/10.4230/LIPICS.ICALP.2019.113.
  29. Bartlomiej Dudek, Pawel Gawrychowski, and Tatiana Starikovskaya. All non-trivial variants of 3-ldt are equivalent. In Konstantin Makarychev, Yury Makarychev, Madhur Tulsiani, Gautam Kamath, and Julia Chuzhoy, editors, Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing, STOC 2020, Chicago, IL, USA, June 22-26, 2020, pages 974-981. ACM, 2020. URL: https://doi.org/10.1145/3357713.3384275.
  30. Matthias Ehrgott and Xavier Gandibleux. A survey and annotated bibliography of multiobjective combinatorial optimization. OR-spektrum, 22:425-460, 2000. URL: https://doi.org/10.1007/S002910000046.
  31. Jeff Erickson. New lower bounds for convex hull problems in odd dimensions. SIAM J. Comput., 28(4):1198-1214, 1999. URL: https://doi.org/10.1137/S0097539797315410.
  32. Nick Fischer, Marvin Künnemann, and Mirza Redzic. The effect of sparsity on k-dominating set and related first-order graph properties. In David P. Woodruff, editor, Proceedings of the 2024 ACM-SIAM Symposium on Discrete Algorithms, SODA 2024, Alexandria, VA, USA, January 7-10, 2024, pages 4704-4727. SIAM, 2024. URL: https://doi.org/10.1137/1.9781611977912.168.
  33. Daniel Funke, Demian Hespe, Peter Sanders, Sabine Storandt, and Carina Truschel. Pareto sums of pareto sets: Lower bounds and algorithms. CoRR, abs/2409.10232, 2024. URL: https://doi.org/10.48550/arXiv.2409.10232.
  34. Harold N. Gabow, Jon Louis Bentley, and Robert Endre Tarjan. Scaling and related techniques for geometry problems. In Richard A. DeMillo, editor, Proceedings of the 16th Annual ACM Symposium on Theory of Computing, April 30 - May 2, 1984, Washington, DC, USA, pages 135-143. ACM, 1984. URL: https://doi.org/10.1145/800057.808675.
  35. Anka Gajentaan and Mark H. Overmars. On a class of o(n2) problems in computational geometry. Comput. Geom., 5:165-185, 1995. URL: https://doi.org/10.1016/0925-7721(95)00022-2.
  36. Jiawei Gao, Russell Impagliazzo, Antonina Kolokolova, and Ryan Williams. Completeness for first-order properties on sparse structures with algorithmic applications. ACM Trans. Algorithms, 15(2):23:1-23:35, 2019. URL: https://doi.org/10.1145/3196275.
  37. Demian Hespe, Peter Sanders, Sabine Storandt, and Carina Truschel. Pareto sums of pareto sets. In Inge Li Gørtz, Martin Farach-Colton, Simon J. Puglisi, and Grzegorz Herman, editors, 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands, volume 274 of LIPIcs, pages 60:1-60:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023. URL: https://doi.org/10.4230/LIPICS.ESA.2023.60.
  38. Daniel P. Huttenlocher and Klara Kedem. Computing the minimum hausdorff distance for point sets under translation. In Raimund Seidel, editor, Proceedings of the Sixth Annual Symposium on Computational Geometry, Berkeley, CA, USA, June 6-8, 1990, pages 340-349. ACM, 1990. URL: https://doi.org/10.1145/98524.98599.
  39. Zahra Jafargholi and Emanuele Viola. 3sum, 3xor, triangles. Algorithmica, 74(1):326-343, 2016. URL: https://doi.org/10.1007/S00453-014-9946-9.
  40. Tsvi Kopelowitz, Seth Pettie, and Ely Porat. Higher lower bounds from the 3sum conjecture. In Robert Krauthgamer, editor, Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2016, Arlington, VA, USA, January 10-12, 2016, pages 1272-1287. SIAM, 2016. URL: https://doi.org/10.1137/1.9781611974331.CH89.
  41. Marvin Künnemann. A tight (non-combinatorial) conditional lower bound for klee’s measure problem in 3d. In 63rd IEEE Annual Symposium on Foundations of Computer Science, FOCS 2022, Denver, CO, USA, October 31 - November 3, 2022, pages 555-566. IEEE, 2022. URL: https://doi.org/10.1109/FOCS54457.2022.00059.
  42. Andrea Lincoln, Virginia Vassilevska Williams, Joshua R. Wang, and R. Ryan Williams. Deterministic time-space trade-offs for k-sum. In Ioannis Chatzigiannakis, Michael Mitzenmacher, Yuval Rabani, and Davide Sangiorgi, editors, 43rd International Colloquium on Automata, Languages, and Programming, ICALP 2016, July 11-15, 2016, Rome, Italy, volume 55 of LIPIcs, pages 58:1-58:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016. URL: https://doi.org/10.4230/LIPICS.ICALP.2016.58.
  43. Andrea Lincoln, Virginia Vassilevska Williams, and R. Ryan Williams. Tight hardness for shortest cycles and paths in sparse graphs. In Artur Czumaj, editor, Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2018, New Orleans, LA, USA, January 7-10, 2018, pages 1236-1252. SIAM, 2018. URL: https://doi.org/10.1137/1.9781611975031.80.
  44. Thibaut Lust and Daniel Tuyttens. Variable and large neighborhood search to solve the multiobjective set covering problem. Journal of Heuristics, 20:165-188, 2014. URL: https://doi.org/10.1007/S10732-013-9236-8.
  45. André Nusser. Fine-grained complexity and algorithm engineering of geometric similarity measures. PhD thesis, Saarland University, Saarbrücken, Germany, 2021. URL: https://publikationen.sulb.uni-saarland.de/handle/20.500.11880/33904.
  46. Mihai Puatracscu. Towards polynomial lower bounds for dynamic problems. In Leonard J. Schulman, editor, Proceedings of the 42nd ACM Symposium on Theory of Computing, STOC 2010, Cambridge, Massachusetts, USA, 5-8 June 2010, pages 603-610. ACM, 2010. URL: https://doi.org/10.1145/1806689.1806772.
  47. Britta Schulze, Kathrin Klamroth, and Michael Stiglmayr. Multi-objective unconstrained combinatorial optimization: a polynomial bound on the number of extreme supported solutions. Journal of Global Optimization, 74(3):495-522, 2019. URL: https://doi.org/10.1007/S10898-019-00745-6.
  48. Carola Wenk. Shape matching in higher dimensions. PhD thesis, Free University of Berlin, Dahlem, Germany, 2003. URL: http://www.diss.fu-berlin.de/2003/151/index.html.
  49. Ryan Williams. Faster decision of first-order graph properties. In Thomas A. Henzinger and Dale Miller, editors, Joint Meeting of the Twenty-Third EACSL Annual Conference on Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), CSL-LICS '14, Vienna, Austria, July 14 - 18, 2014, pages 80:1-80:6. ACM, 2014. URL: https://doi.org/10.1145/2603088.2603121.
  50. Virginia Vassilevska Williams. On some fine-grained questions in algorithms and complexity. In Proceedings of the international congress of mathematicians: Rio de janeiro 2018, pages 3447-3487. World Scientific, 2018. Google Scholar
  51. Virginia Vassilevska Williams and Ryan Williams. Subcubic equivalences between path, matrix and triangle problems. In 51th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2010, October 23-26, 2010, Las Vegas, Nevada, USA, pages 645-654. IEEE Computer Society, 2010. URL: https://doi.org/10.1109/FOCS.2010.67.
  52. Virginia Vassilevska Williams and Ryan Williams. Finding, minimizing, and counting weighted subgraphs. SIAM J. Comput., 42(3):831-854, 2013. URL: https://doi.org/10.1137/09076619X.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail